APPENDIX G

APPENDIX G - MUNICIPAL ANALYSIS & TARGETS

Municipal Analysis & Targets - Alburgh

The following is an explanation of the municipal energy data compiled by Northwest Regional Planning Commission (NRPC). The intent of the municipal energy data is to provide the municipalities with data required to ensure compliance with the requirements of Act 174 and "Enhanced Energy Planning" (24 V.S.A. 4352). The following tables contain data that estimates

current energy use and provides targets for future energy use across all sectors (transportation, heating, and electricity). It also sets targets for renewable energy generation within the municipality.

This data is meant to be a starting point for the municipality to begin planning its energy future and to talk about the changes that may need to occur within the municipality to ensure that local, regional and state energy goals are met. This includes the State of Vermont's goal to have 90% of all energy demand be met from renewable sources by 2050.

Figure 1 - Data Sources

ACS - American Community Survey
DOL -Vermont Department of Labor
DPS - Vermont Department of Public Service
EIA - Energy Information Administration
EVT - Efficiency Vermont
LEAP - Long-Range Energy Alternatives Planning
VEIC - Vermont Energy Investment Corporation

VTrans – Vermont Agency of Transportation

Data Sources

Estimates of current energy use consist primarily of data available from the American Community Survey (ACS), the Vermont Agency of Transportation (VTrans), the Vermont Department of Labor (DOL), and the Vermont Department of Public Service (DPS). Targets for future energy use are reliant upon the Long-range Energy Alternatives Planning (LEAP) analysis for the region completed the Vermont Energy Investment Corporation (VEIC). Targets for future energy generation have come from the regional planning commission and DPS. For more information on LEAP, see the Northwest Regional Energy Plan (www.nrpcvt.com). Targets for both future energy use and energy generation have been generally developed using a "top down" method of disaggregating regional data to the municipal level.

It is possible to develop "bottom up" data. For those municipalities interested in that approach, please see the Department of Public Service's Analysis and Targets Guidance (http://publicservice.vermont.gov/content/act-174-recommendations-and-determination-standards).

Please remember that the targets established by LEAP represent only one way to achieve energy goals. There may several other similar pathways that a municipality may choose to take in order to meet the 90x50 goal.

Below is a worksheet by worksheet explanation of the Municipal Template spreadsheet:

1. Municipal Data Summary

The following tables summarize all data that is required to be in a municipal plan if the plan is to meet the "determination" standards established by the Vermont Department of Public Service.

Table 1A: Current Municipal Transportation Energy Use			
Transportation Data	Municipal Data		
Total # of Passenger Vehicles (ACS 2011-2015)	1,398		
Average Miles per Vehicle (Vtrans)	11,356		
Total Miles Traveled	15,875,688		
Realized MPG (2013 - VTrans 2015 Energy Profile)	18.6		
Total Gallons Use per Year	853,532		
Transportation BTUs (Billion)	103		
Average Cost per Gallon of Gasoline (RPC)	2.31		
Gasoline Cost per Year	1,971,658		

This table uses data from the American Community Survey (ACS) and Vermont Agency of Transportation (VTrans) to calculate current transportation energy use and energy costs in the municipality.

Table 1B: Current Municipal Residential Heating Energy Use					
Fuel Source	Municipal Households (ACS 2011-2015)	% of Municipal Households	Municipal Square Footage Heated	Municipal BTU (in Billions)	
Natural Gas	2	0.3%	3,808	0	
Propane	77	10.8%	133,936	8	
Electricity	0	0.0%	0	0	
Fuel Oil	478	67.0%	829,856	50	
Coal	0	0.0%	0	0	
Wood	146	20.5%	257,568	15	
Solar	0	0.0%	0	0	
Other	10	1.4%	19,040	1	
No Fuel	0	0.0%	0	0	
Total	713	100.0%	1,244,208	75	

This table displays data from the ACS that estimates current municipal residential heating energy use.

Table 1C: Current Municipal Commercial Energy Use					
	Commercial Establishments in Municipality (VT DOL)	Estimated Thermal Energy BTUs per Commercial Establishment (in Billions) (VDPS)	Estimated Thermal Energy BTUs by Commercial Establishments in Municipality (in Billions)		
Municipal Commercial Energy Use	38	0.725	28		

The table uses data available from the Vermont Department of Labor (VT DOL) and the Vermont Department of Public Service (DPS) to estimate current municipal commercial establishment energy use in the municipality.

Table 1D: Current Electricity Use			
Use Sector	Current Electricity Use		
Residential (kWh)	6,409,401		
Commercial and Industrial (kWh)	9,749,783		
Total (kWh)	16,159,184		

This table displays current electricity use within the municipality. This data is available from Efficiency Vermont (EVT).

Table 1E: Residential Thermal Efficiency Targets			
	2025	2035	2050
"Residential - Increased Efficiency and Conservation (% of municipal households to be weatherized)"	5%	16%	78%

This table displays targets for thermal efficiency of residential structures. The data is based on a methodology developed by DPS using data available from the regional Long-range Energy Alternatives Planning (LEAP) analysis and ACS. The data in this table represents the percentage of municipal households that will need to be weatherized in the target years. The target is cumulative.

Table 1F: Commercial Thermal Efficiency Target				
	2025	2035	2050	
"Commercial - Increased Efficiency and Conservation (% of commercial establishments to be weatherized)"	25%	25%	73%	

This table shows the same information as Table 1E, but sets a target for commercial thermal efficiency and weatherization. Information from the VT DOL is required to complete this target. The target is cumulative.

Table 1G: Thermal Fuel Switching (Residential and Commercial) – Wood Systems

	2025	2035	2050
New Efficient Wood Heat Systems (in units)	0	0	4

This table provides a target for new wood heating systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 1H: Thermal Fuel Switching (Residential and Commercial) – Heat Pumps

	2025	2035	2050
New Heat Pumps (in units)	85	195	365

This table provides a target for new heat pump systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 11: Electricity Efficiency Targets

	2025	2035	2050
Increase Efficiency and Conservation (BTUs)	25.2%	48.3%	100.7%

Data in this table displays a target for increased electricity efficiency and conservation during the target years. This target will be met through conversions to high efficiency appliances, electric heat pumps, and electric light-duty vehicles. These targets were developed using regional LEAP analysis. The target is cumulative.

Table 1J: Use of Renewables - Transportation

	2025	2035	2050
Renewable Energy Use - Transportation (BTUs)	9.6%	31.2%	90.3%

This data displays targets for the percentage of transportation energy use coming from renewable sources during each target year. This target will be met through conversions to electric light-duty vehicles and biodiesel heavy-duty vehicles. This data was developed using the LEAP analysis. The target is cumulative.

Table 1K: Use of Renewables – Heating				
	2025	2035	2050	
Renewable Energy Use - Heating (BTUs)	45.1%	58.3%	86.2%	

This data displays targets for the percentage of heating energy use coming from renewable sources during each target year. This target will be met through conversions to electric heat pumps and high efficiency wood heating systems. This data was developed using information from the LEAP analysis. The target is cumulative.

Table 1L: Use of Renewables – Electricity				
	2025	2035	2050	
Renewable Energy Use - Electricity (MWh)	4,371.9	8,743.9	13,248.3	

This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1Q. The target is cumulative.

Table 1M: Transportation Fuel Switching Ta	argets – Ele	ctric Venic	cies
	2025	2035	2050

122

This tables displays a target for switching from fossil fuel based vehicles (gasoline and diesel) to electric vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

Electric Vehicles

Table 1N: Transportation Fuel Switchin	g Targets -	- Biodiesel	
	2025	2035	2050
Biodiesel Vehicles	215	427	823

This tables displays a target for switching from fossil fuel based vehicles to biodiesel-powered vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

916

2,179

Table 10: Existing Renewable Generation				
Renewable Type	MW	MWh		
Solar	0.11	134.90		
Wind	0.00	0.00		
Hydro	0.00	0.00		
Biomass	0.00	0.00		
Other	0.00	0.00		
Total Existing Generation	0.11	134.90		

Table 10 shows existing renewable generation in the municipality, in MW and MWh, based on information available from the Vermont Department of Public Service.

Table 1P: Renewable	Table 1P: Renewable Generation Potential				
Renewable Type	MW	MWh			
Rooftop Solar	1	1,107			
Ground-mounted Solar	837	1,026,653			
Wind	1,658	5,084,685			
Hydro	0.01	28			
Biomass and Methane	0	0			
Other	0	0			
Total Renewable Generation Potential	2,496	6,112,473			

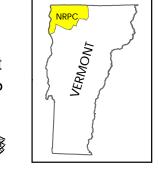
Renewable generation potential is based on mapping completed by the regional planning commission that is based on the Municipal Determination Standards and associated guidance documents developed by DPS. The renewable generation potential is expressed in MW and MWh by the type of renewable resource (solar, wind, hydro, etc.).

Table 1Q: Renewable Generation Targets

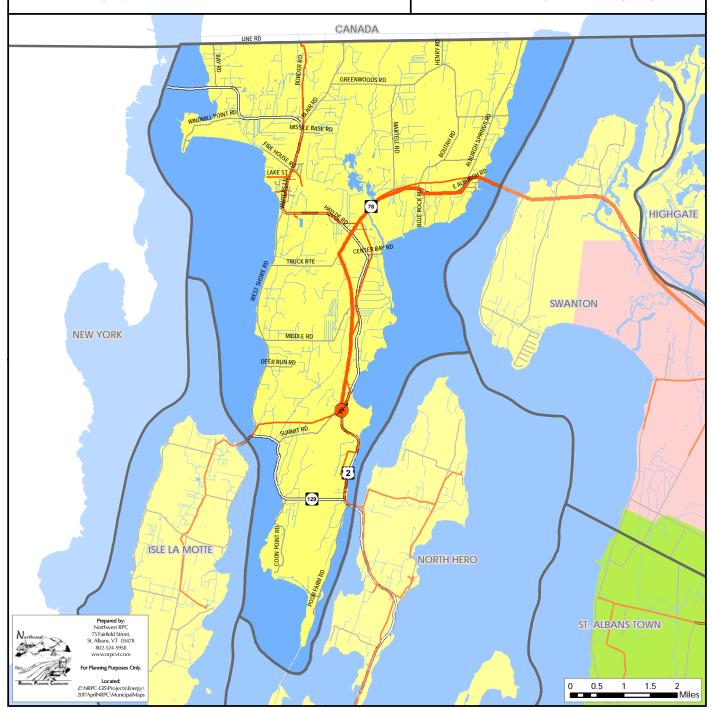
	2025	2035	2050
Total Renewable Generation Target (in MWh)	4,371.94	8,743.89	13,248.31

This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1L.

Table 1R: Sufficient Land?


	Y/N
Solar	Υ
Wind	Υ

This table shows whether or not there is sufficient land in the municipality to meet the renewable generation targets based on the renewable generation potential in the municipality.


Utility Service Areas

Alburgh, Vermont Act 174 The Energy Development Improvement Act of 2016

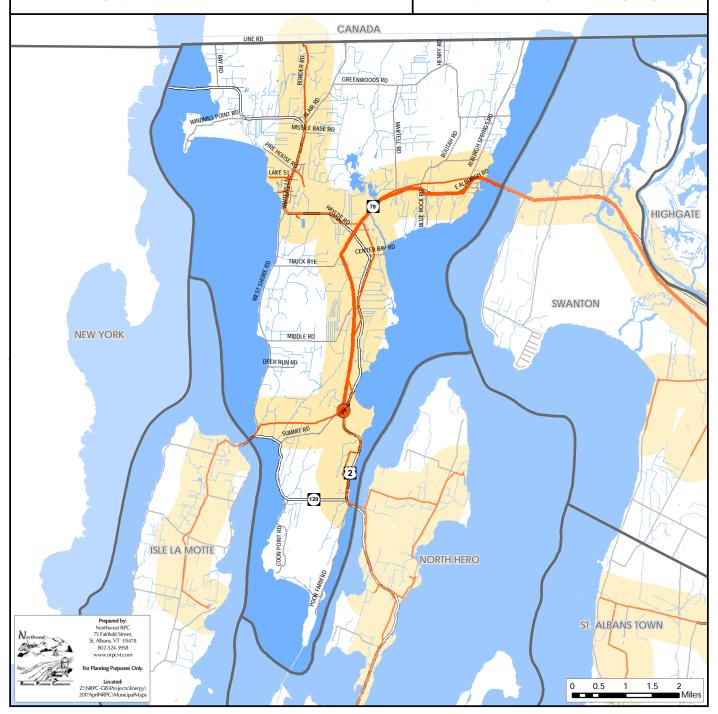
This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend Utility Service Area Features Green Mountain Power Swanton Village Electric Vermont Electric Co-op Enosburg Falls Electric Transmission Line

Transmission & 3 Phase Power Infrastructure

Alburgh, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "sitting maps."


Legend

Substation

3 Phase Power Line

Transmission Line

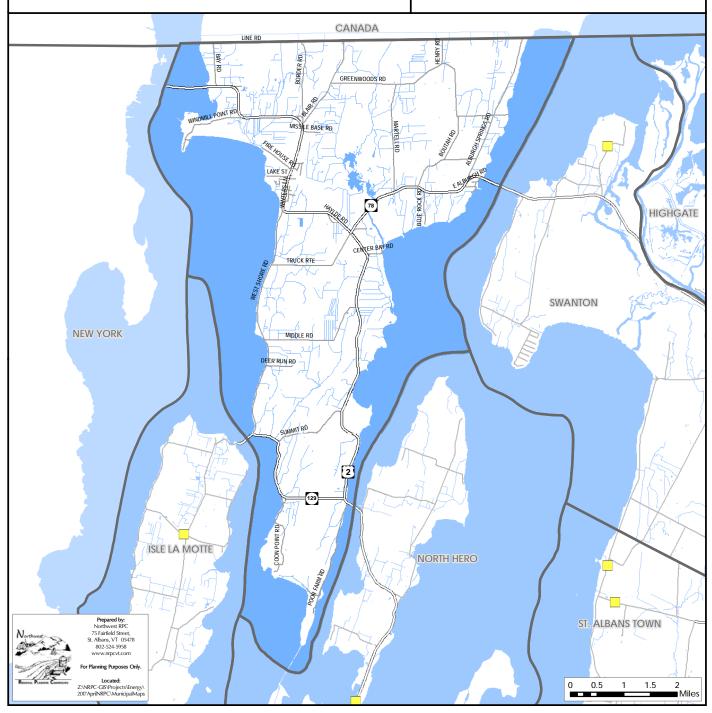
1/2 Mile Buffer (3 Phase Power Line & Transmission Line)



Existing Generation Facilities

Alburgh, Vermont Ăct 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."


Legend

Biomass Facility

Hydro Facility

Note: Only generators 15kW are shown on the map. A full list of all generators is available. Solar Facility

Wind Facility

Hydro

Alburgh, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipallities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Substation

3 Phase Power Line
Transmission Line

Designated Outstanding Resource Water

Known Constraint - Designated National Wild & Scenic River

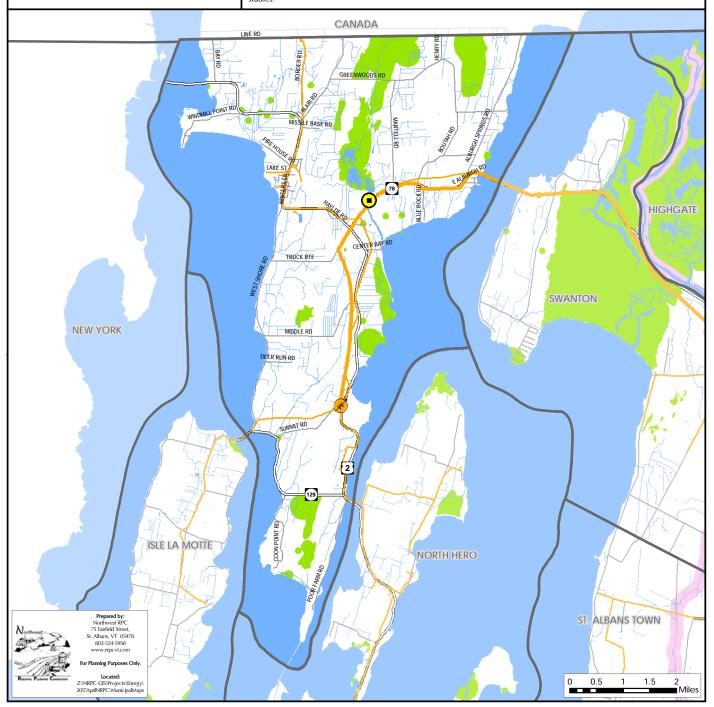
Possible Constraint -Stressed or Impaired Water

Possible Constraint - RINAs

Potential Hydroelectric Facility

< 50 kW Capacity</p>

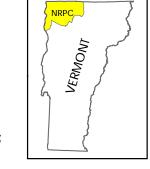
> 50 kW Capacity
High Hazard with
< 50 kW Capacity


High Hazard with > 50 kW Capacity

Operating Hydroelectric Facility

Dam not on National
Wild and Scenic River

Dam on National Wild and Scenic River



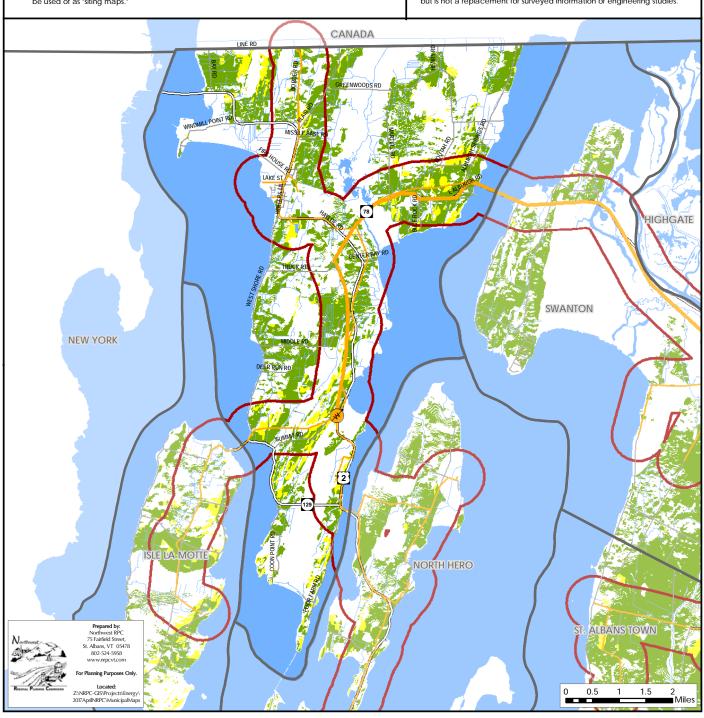
Solar

Alburgh, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "sitting maps."

Legend

Substation


3 Phase Power Line

Transmission Line

1/2 Mile Buffer (3 Phase Power Line & Transmission Line)

Prime Solar/No Known Constraints

Base Solar/Possible Constraints

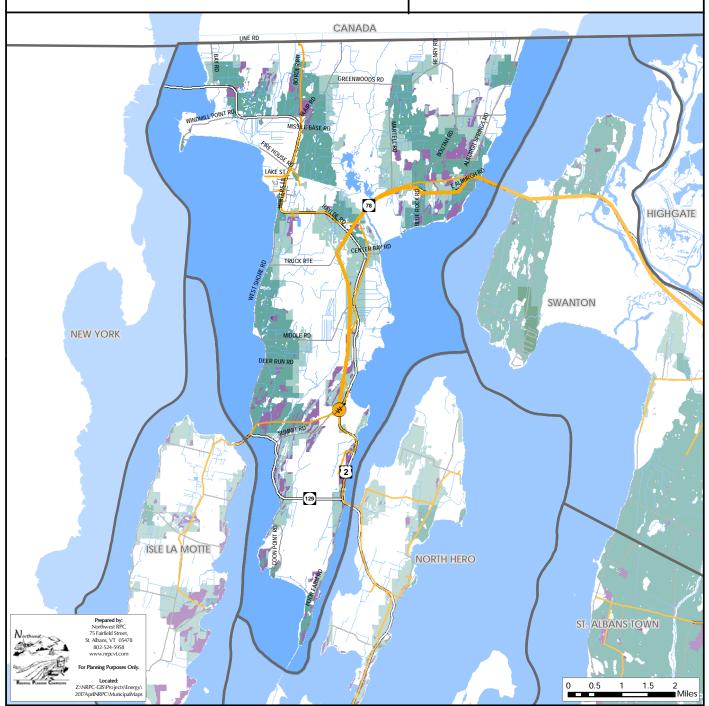
Wind

Alburgh, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipallities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Substation


3 Phase Power Line Transmission Line

Prime Wind Areas of high wind potential and no known constraints.

Darker areas have higher wind speeds.

Base Wind Areas of high wind potential and a presence of possible constraints.

Darker areas have higher wind speeds.

Woody Biomass

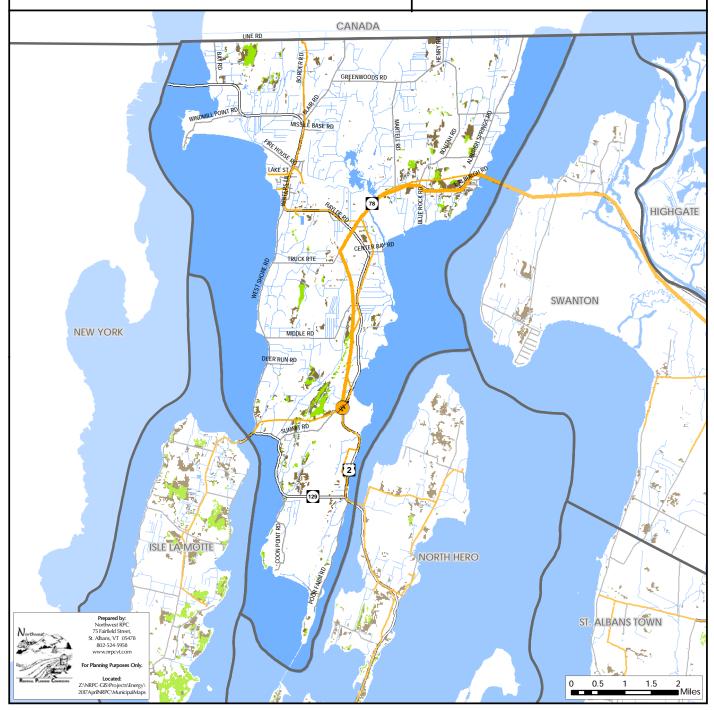
Alburgh, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipallities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Biomass System

Cow Power



3 Phase Power Line

Transmission Line

Prime Woody Biomass/No Known Constraints

	All	All Generators in Municipality	Municipality			
Category	Sub - Category	Organization Type	Address	City	CPG Number	Capacity kW
Solar	Ground-mounted PV: Fixed Rack	Residential	44 Bay Rd	Alburgh		12
Solar	Roof-Mounted PV	Residential	70 Bay Road	Alburgh	2760	11.4
Solar	Ground-mounted PV: Tracker	Residential	24 Deer Run	Alburgh	3776	10.3
Solar	Ground-mounted PV: Tracker	Residential	180 US Route 129	Alburgh	2254	10
Solar	Roof-Mounted PV	Residential	669 US Route 2	Alburgh	6063	10
Solar	Roof-Mounted PV	Residential	10 Garcia Lane	Alburgh	2002	9.1
Solar	Ground-mounted PV: Pole	Residential	98 Route 129	Alburgh	6465	7
Solar	Roof-Mounted PV	Residential	88 Route 129	Alburgh		7
Solar	Roof-Mounted PV	Residential	23 West Shore Rd	Alburgh	1697	8.9
Solar	Roof-Mounted PV	Residential	85 Fiske Road	Alburgh	2168	9
Solar	Roof-Mounted PV	Residential	539 US Route 2	Alburgh	7205	9
Solar	Roof-Mounted PV	Residential	26 Baker St	Alburgh	4021	3.8
Solar	Roof-Mounted PV	Residential	325 W Shore Rd	Alburgh	2912	3.7
Solar	Ground-mounted PV: Fixed Rack	Residential	172 Alburg Springs Rd	Alburgh	5462	3.1
Solar	Ground-mounted PV: Fixed Rack	Residential		Alburgh	9289	
Solar	Hot Water	Residential	1A-1B Carle Street	Alburgh		
Solar	Hot Water	Residential	4 North Main Street	Alburgh		
Solar	Hot Water	Residential	5C-5B Carle Street	Alburgh		
Wind	Small Wind	Institution		Alburgh	148	9.5

Municipal Analysis & Targets - Bakersfield

The following is an explanation of the municipal energy data compiled by Northwest Regional Planning Commission (NRPC). The intent of the municipal energy data is to provide the municipalities with data required to ensure compliance with the requirements of Act 174 and "Enhanced Energy Planning" (24 V.S.A. 4352). The following tables contain data that estimates

current energy use and provides targets for future energy use across all sectors (transportation, heating, and electricity). It also sets targets for renewable energy generation within the municipality.

This data is meant to be a starting point for the municipality to begin planning its energy future and to talk about the changes that may need to occur within the municipality to ensure that local, regional and state energy goals are met. This includes the State of Vermont's goal to have 90% of all energy demand be met from renewable sources by 2050.

Figure 1 - Data Sources

ACS - American Community Survey
DOL -Vermont Department of Labor
DPS - Vermont Department of Public Service
EIA - Energy Information Administration
EVT - Efficiency Vermont
LEAP - Long-Range Energy Alternatives Planning
VEIC - Vermont Energy Investment Corporation
VTrans - Vermont Agency of Transportation

Data Sources

Estimates of current energy use consist primarily of data available from the American Community Survey (ACS), the Vermont Agency of Transportation (VTrans), the Vermont Department of Labor (DOL), and the Vermont Department of Public Service (DPS). Targets for future energy use are reliant upon the Long-range Energy Alternatives Planning (LEAP) analysis for the region completed the Vermont Energy Investment Corporation (VEIC). Targets for future energy generation have come from the regional planning commission and DPS. For more information on LEAP, see the Northwest Regional Energy Plan (www.nrpcvt.com). Targets for both future energy use and energy generation have been generally developed using a "top down" method of disaggregating regional data to the municipal level.

It is possible to develop "bottom up" data. For those municipalities interested in that approach, please see the Department of Public Service's Analysis and Targets Guidance (http://publicservice.vermont.gov/content/act-174-recommendations-and-determination-standards).

Please remember that the targets established by LEAP represent only one way to achieve energy goals. There may several other similar pathways that a municipality may choose to take in order to meet the 90x50 goal.

Below is a worksheet by worksheet explanation of the Municipal Template spreadsheet:

1. Municipal Data Summary

The following tables summarize all data that is required to be in a municipal plan if the plan is to meet the "determination" standards established by the Vermont Department of Public Service.

Table 1A: Current Municipal Transportation Energy Use				
Transportation Data	Municipal Data			
Total # of Passenger Vehicles (ACS 2011-2015)	1,074			
Average Miles per Vehicle (Vtrans)	11,356			
Total Miles Traveled	12,196,344			
Realized MPG (2013 - VTrans 2015 Energy Profile)	18.6			
Total Gallons Use per Year	655,717			
Transportation BTUs (Billion)	79			
Average Cost per Gallon of Gasoline (RPC)	2.31			
Gasoline Cost per Year	1,514,707			

This table uses data from the American Community Survey (ACS) and Vermont Agency of Transportation (VTrans) to calculate current transportation energy use and energy costs in the municipality.

Fuel Source	Households (ACS 2011-2015)	% of Municipal Households	Municipal Square Footage Heated	Municipal BTU (in Billions)
Natural Gas	2	0.4%	3,808	0
Propane	49	9.8%	82,736	5
Electricity	0	0.0%	0	0
Fuel Oil	209	41.8%	381,040	23
Coal	0	0.0%	0	0
Wood	232	46.4%	427,648	26

Table 1B: Current Municipal Residential Heating Energy Use

This table displays data from the ACS that estimates current municipal residential heating energy use.

0.0%

1.6%

0.0%

100.0%

0

15,232

0

910,464

0

1

0

55

0

8

0

500

Solar

Other

Total

No Fuel

Table 10	C: Current Munic	cipal Commercial En	ergy Use
	Commercial Establishments in Municipality (VT DOL)	Estimated Thermal Energy BTUs per Commercial Establishment (in Billions) (VDPS)	Estimated Thermal Energy BTUs by Commercial Establishments in Municipality (in Billions)
Municipal Commercial Energy Use	10	0.725	7

The table uses data available from the Vermont Department of Labor (VT DOL) and the Vermont Department of Public Service (DPS) to estimate current municipal commercial establishment energy use in the municipality.

Table 1D: Current Electricity Use			
Use Sector	Current Electricity Use		
Residential (kWh)	4,494,671		
Commercial and Industrial (kWh)	2,565,732		
Total (kWh)	7,060,403		

This table displays current electricity use within the municipality. This data is available from Efficiency Vermont (EVT).

Table 1E: Residential Thermal Effi	iciency Tai	rgets	
	2025	2035	2050
"Residential - Increased Efficiency and Conservation (% of municipal households to be weatherized)"	5%	16%	78%

This table displays targets for thermal efficiency of residential structures. The data is based on a methodology developed by DPS using data available from the regional Long-range Energy Alternatives Planning (LEAP) analysis and ACS. The data in this table represents the percentage of municipal households that will need to be weatherized in the target years. The target is cumulative.

Table 1F: Commercial Thermal Efficiency Target			
	2025	2035	2050
"Commercial - Increased Efficiency and Conservation (% of commercial establishments to be weatherized)"	25%	25%	73%

This table shows the same information as Table 1E, but sets a target for commercial thermal efficiency and weatherization. Information from the VT DOL is required to complete this target. The target is cumulative.

Table 1G: Thermal Fuel Switching (Residential and Commercial) – Wood Systems

	2025	2035	2050
New Efficient Wood Heat Systems (in units)	0	0	0

This table provides a target for new wood heating systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 1H: Thermal Fuel Switching (Residential and Commercial) – Heat Pumps

	2025	2035	2050
New Heat Pumps (in units)	60	136	255

This table provides a target for new heat pump systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 11: Electricity Efficiency Targets

	2025	2035	2050
Increase Efficiency and Conservation (BTUs)	25.2%	48.3%	100.7%

Data in this table displays a target for increased electricity efficiency and conservation during the target years. This target will be met through conversions to high efficiency appliances, electric heat pumps, and electric light-duty vehicles. These targets were developed using regional LEAP analysis. The target is cumulative.

Table 1J: Use of Renewables - Transportation

	2025	2035	2050
Renewable Energy Use - Transportation (BTUs)	5.3%	23.6%	86.9%

This data displays targets for the percentage of transportation energy use coming from renewable sources during each target year. This target will be met through conversions to electric light-duty vehicles and biodiesel heavy-duty vehicles. This data was developed using the LEAP analysis. The target is cumulative.

Table 1K: Use of Renewables – Heating			
	2025	2035	2050
Renewable Energy Use - Heating (BTUs)	46.7%	60.4%	88.4%

This data displays targets for the percentage of heating energy use coming from renewable sources during each target year. This target will be met through conversions to electric heat pumps and high efficiency wood heating systems. This data was developed using information from the LEAP analysis. The target is cumulative.

Table 1L: Use of Renewables – Electricity				
2025 2035 2050				
Renewable Energy Use - Electricity (MWh)	4,262.5	8,525.0	12,916.6	

This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 10. The target is cumulative.

Table 1M: Transportation Fuel Switching	g Targets - Electric Vehicles
---	-------------------------------

	2025	2035	2050
Electric Vehicles	94	704	1,674

This tables displays a target for switching from fossil fuel based vehicles (gasoline and diesel) to electric vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

Table 1N:	Transportation	Fuel Switching	Targets - Biodiesel

	2025	2035	2050
Biodiesel Vehicles	67	131	247

This tables displays a target for switching from fossil fuel based vehicles to biodiesel-powered vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

Table 10: Existing Renewable Generation				
Renewable Type	MW	MWh		
Solar	0.14	171.70		
Wind	0.01	42.92		
Hydro	0.00	0.00		
Biomass	0.40	1,636.37		
Other	0.00	0.00		
Total Existing Generation	0.55	1,850.99		

Table 10 shows existing renewable generation in the municipality, in MW and MWh, based on information available from the Vermont Department of Public Service.

Table 1P: Renewable Generation Potential					
Renewable Type	MW	MWh			
Rooftop Solar	1	675			
Ground-mounted Solar	288	352,686			
Wind	160	490,652			
Hydro	0.03	119			
Biomass and Methane	0	0			
Other	0	0			
Total Renewable Generation Potential	448	844,132			

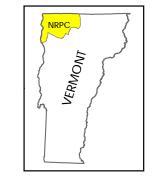
Renewable generation potential is based on mapping completed by the regional planning commission that is based on the Municipal Determination Standards and associated guidance documents developed by DPS. The renewable generation potential is expressed in MW and MWh by the type of renewable resource (solar, wind, hydro, etc.).

Table 10: Renewable Generation Targets

	2025	2035	2050
Total Renewable Generation Target (in MWh)	4,262.48	8,524.97	12,916.62

This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1L.

Table 1R: Sufficient Land?


	Y/N
Solar	Υ
Wind	Υ

This table shows whether or not there is sufficient land in the municipality to meet the renewable generation targets based on the renewable generation potential in the municipality.

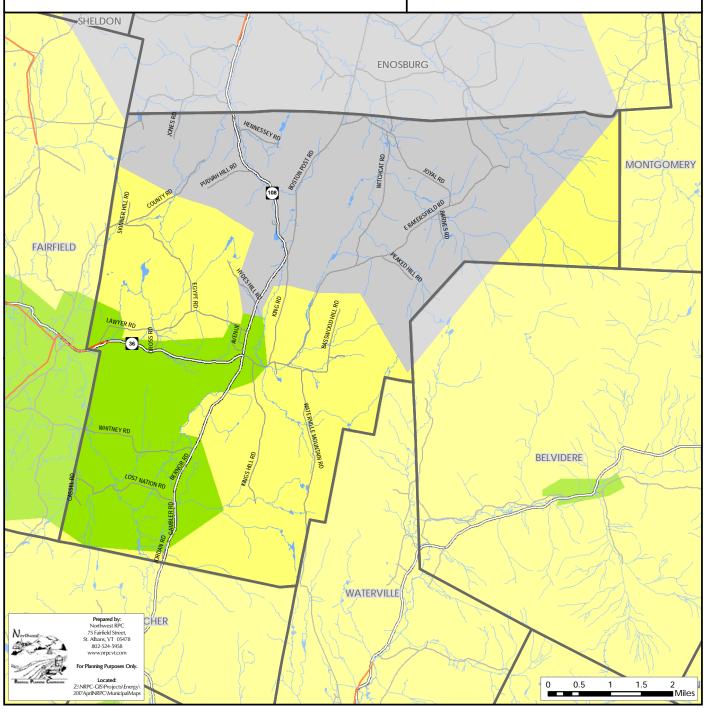
Utility Service Areas

Bakersfield, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "sitting maps."

Legend **Utility Service Area Features**

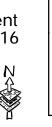
Green Mountain Power

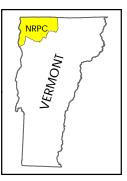


Substation

Swanton Village Electric Vermont Electric Co-op

3 Phase Power Line Transmission Line

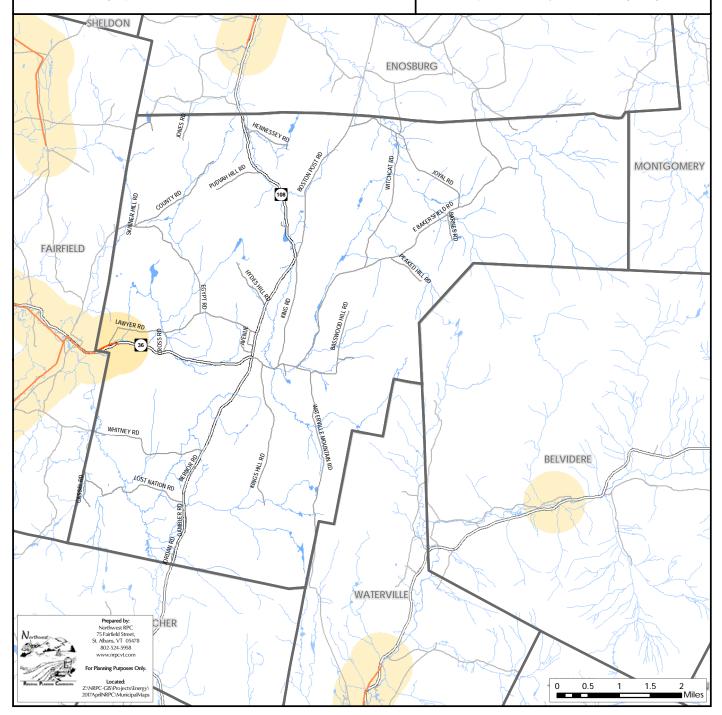

Enosburg Falls Electric



Transmission & 3 Phase **Power Infrastructure**

Bakersfield, Vermont Act 174 The Energy Development Improvement Act of 2016

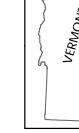
This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "sitting maps."

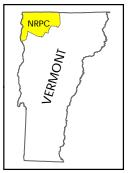

Legend

Substation

3 Phase Power Line

Transmission Line


1/2 Mile Buffer (3 Phase Power Line & Transmission Line)

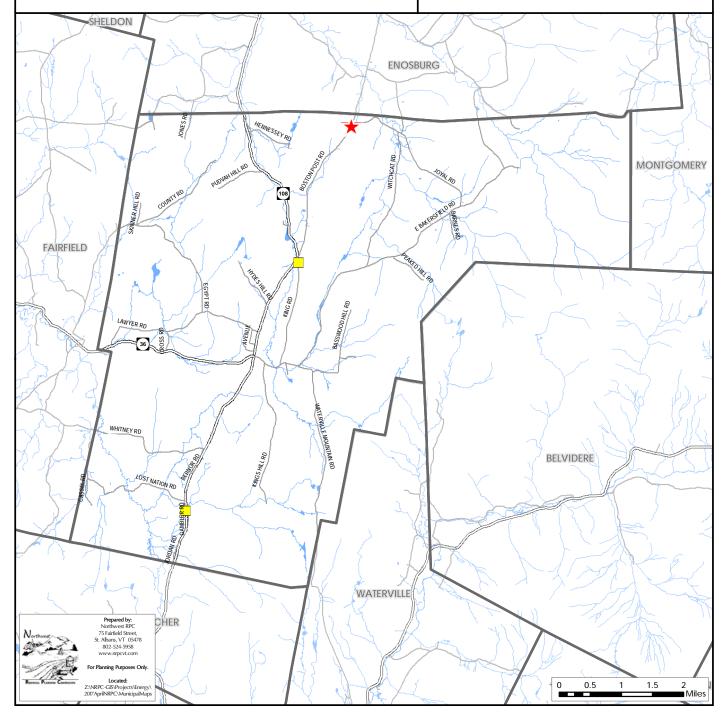


Existing Generation Facilities

Bakersfield, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend


Biomass Facility

Hydro Facility

Solar Facility

Note: Only generators 15kW are shown on the map. A full list of all generators is available.

Wind Facility

Hydro

Bakersfield, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Substation

3 Phase Power LineTransmission Line

Designated Outstanding Resource Water

Known Constraint - Designated National Wild & Scenic River

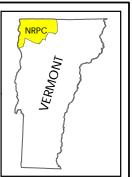
Possible Constraint -Stressed or Impaired Water Possible Constraint - RINAs Operating Hydroelectric Facility

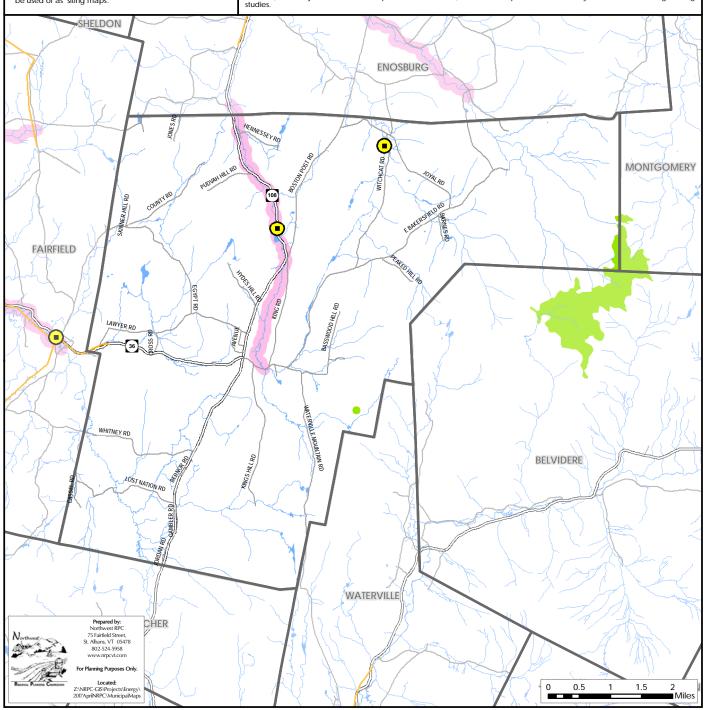
Potential Hydroelectric Facility

< 50 kW Capacity

> 50 kW Capacity

High Hazard with < 50 kW Capacity


High Hazard with > 50 kW Capacity


 \bigoplus

H)

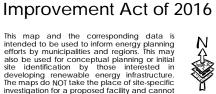
Dam not on National Wild and Scenic River

Dam on National Wild and Scenic River

Northwest Regional Energy Plan 2017 Legend Solar Substation Bakersfield, Vermont 3 Phase Power Line Act 174 Transmission Line 1/2 Mile Buffer (3 Phase Power Line & Transmission Line) The Energy Development Prime Solar/No Known Constraints Improvement Act of 2016 Base Solar/Possible Constraints This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "sitting maps." Sources: VCGI Disclaimer: The accuracy of information presented is determined by its sources. Errors and omissions may exist. The Northwest RPC is not responsible for these. Questions of on-the-ground location can be resolved by site inspections and/or surveys by a registered surveyor. This map is not sufficient for delineation of features on-the-ground. This map identifies the presence of features, and may indicate relationships between features, but is not a replacement for surveyed information or engineering studies. SHELDON ENOSBURG MONTGOMERY BELVIDERE

WATERVILLE

CHER


Located: Z:\NRPC-GIS\Projects\Energy\ 2017AprilNRPC\MunicipalMaps

0.5

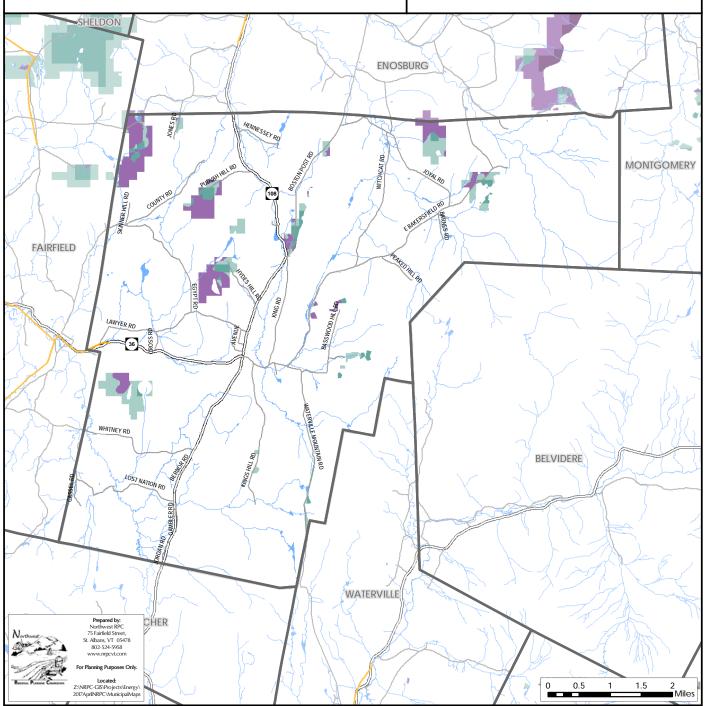
Wind

Bakersfield, Vermont Act 174 The Energy Development

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Substation


3 Phase Power Line Transmission Line

Prime Wind Areas of high wind potential and no known constraints.

Darker areas have higher wind speeds.

Base Wind Areas of high wind potential and a presence of possible constraints.

Darker areas have higher wind speeds.

Woody Biomass

Bakersfield, Vermont Act 174 The Energy Development Improvement Act of 2016

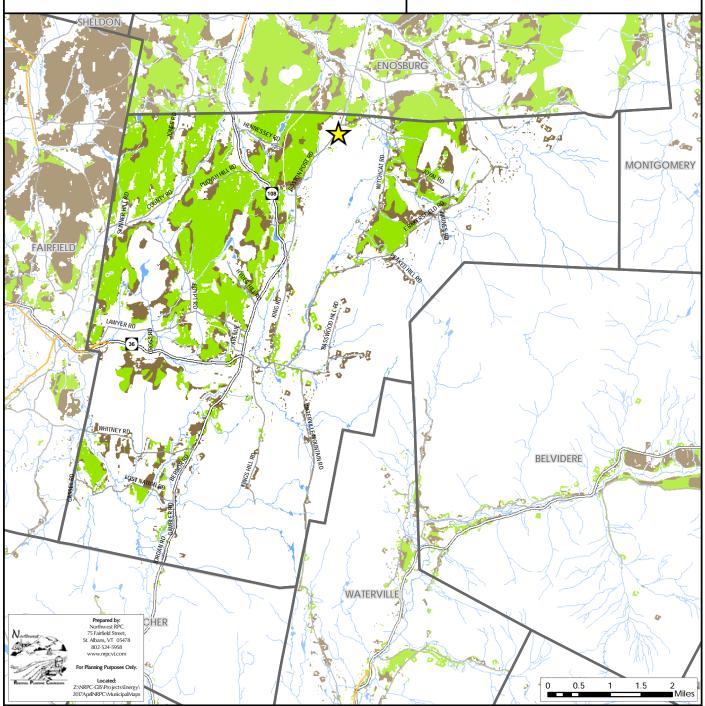
This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "sitting maps."

Legend

Biomass System

Cow Power

Substation


3 Phase Power Line Transmission Line

Prime Woody Biomass/No Known Constraints

Base Woody Biomass/Possible Constraints

	All	Generators	All Generators in Municipality			
Category	Sub - Category	Organiza- tion Type	Address	City	CPG Number	Capacity kW
Biomass	Anaerobic Digester	Farm	6001 Boston Post Road	Bakersfield		400
Solar	Ground-mounted PV: Fixed Rack	Farm	1703 Rt 108 S	Bakersfield	2710	8.9
Solar	Ground-mounted PV: Fixed Rack	Residential	2760 Route 108 South	Bakersfield	16-1368	15
Solar	Ground-mounted PV: Fixed Rack	Residential	1710 King Rd	Bakersfield	16-1148	15
Solar	Ground-mounted PV: Fixed Rack	Residential	1408 Witchcat Rd	Enosburg Falls	16-1149	9
Solar	Ground-mounted PV: Pole	Farm	637 Jones Rd	Bakersfield	2742	5.9
Solar	Ground-mounted PV: Pole	Residential	615 Kings Hill Rd	Bakersfield	5029	7
Solar	Ground-mounted PV: Tracker	Residential	2555 Witchcat Rd	Bakersfield	3544	8.9
Solar	Hot Water	Residential	1331 Waterville Mtn. Rd	Bakersfield		
Solar	Roof-Mounted PV	Residential	1331 Waterville Mtn. Rd	Bakersfield	1557	2
Solar	Roof-Mounted PV	Residential	416 Belvidere Mtn Rd	Bakersfield	5027	9.1
Solar	Roof-Mounted PV	Residential	516 Kings Hill Rd	Bakersfield	6063	7
Solar	Roof-Mounted PV	Residential	3322 Main Street North	Bakersfield	3013	9.9
Solar	Roof-Mounted PV	Residential	142 North Main St	Bakersfield	4288	9
Solar	Roof-Mounted PV	Residential	952 Main St N	Bakersfield	3630	8.9
Solar	Roof-Mounted PV	Residential	1456 Basswood Hill Rd	Bakersfield	7227	9
Solar	Roof-Mounted PV	Residential	663 Kings Hill Road	Bakersfield	7242	1.14
Solar	Roof-Mounted PV	Residential	287 Main Street	Bakersfield	16-0151	3.8
Solar	Roof-Mounted PV	Residential	338 Main Street North	Bakersfield	16-0332	9
Solar	Roof-Mounted PV	Residential	1645 King Road	Bakersfield	16-0493	7.25
Solar	Roof-Mounted PV	Residential	180 Avenue Rd	Bakersfield	16-0654	2
Solar	Roof-Mounted PV	Residential	1982 North Main Street	Bakersfield		2
Solar	Roof-Mounted PV	Residential	450 Witchcat Rd	Bakersfield	6974	7.6
Solar	Roof-Mounted PV	Residential	488 Fairfield Road	Bakersfield	16-1731	9.2
Solar	Roof-Mounted PV	Residential	376 E Bakersfield Rd	Bakersfield	16-0982	7.6
Solar	Roof-Mounted PV	Residential	190 Hydes Hill Rd	Bakersfield	5369	2
Wind	Small Wind	Farm	1703 Route 108 South	Bakersfield	222	9.5

	A	I Generators in Municipality	Municipality			
Category	Sub - Category	Organization Type	Address	City	CPG Number	Capacity kW
Wind	Small Wind	Residential	1171 Witchcat Rd	Bakersfield		2

Municipal Analysis & Targets - Berkshire

The following is an explanation of the municipal energy data compiled by Northwest Regional Planning Commission (NRPC). The intent of the municipal energy data is to provide the municipalities with data required to ensure compliance with the requirements of Act 174 and "Enhanced Energy Planning" (24 V.S.A. 4352). The following tables contain data that estimates

current energy use and provides targets for future energy use across all sectors (transportation, heating, and electricity). It also sets targets for renewable energy generation within the municipality.

This data is meant to be a starting point for the municipality to begin planning its energy future and to talk about the changes that may need to occur within the municipality to ensure that local, regional and state energy goals are met. This includes the State of Vermont's goal to have 90% of all energy demand be met from renewable sources by 2050.

Figure 1 - Data Sources

ACS - American Community Survey
DOL -Vermont Department of Labor
DPS - Vermont Department of Public Service
EIA - Energy Information Administration
EVT - Efficiency Vermont
LEAP - Long-Range Energy Alternatives Planning
VEIC - Vermont Energy Investment Corporation
VTrans - Vermont Agency of Transportation

Data Sources

Estimates of current energy use consist primarily of data available from the American Community Survey (ACS), the Vermont Agency of Transportation (VTrans), the Vermont Department of Labor (DOL), and the Vermont Department of Public Service (DPS). Targets for future energy use are reliant upon the Long-range Energy Alternatives Planning (LEAP) analysis for the region completed the Vermont Energy Investment Corporation (VEIC). Targets for future energy generation have come from the regional planning commission and DPS. For more information on LEAP, see the Northwest Regional Energy Plan (www.nrpcvt.com). Targets for both future energy use and energy generation have been generally developed using a "top down" method of disaggregating regional data to the municipal level.

It is possible to develop "bottom up" data. For those municipalities interested in that approach, please see the Department of Public Service's Analysis and Targets Guidance (http://publicservice.vermont.gov/content/act-174-recommendations-and-determination-standards).

Please remember that the targets established by LEAP represent only one way to achieve energy goals. There may several other similar pathways that a municipality may choose to take in order to meet the 90x50 goal.

Below is a worksheet by worksheet explanation of the Municipal Template spreadsheet:

1. Municipal Data Summary

The following tables summarize all data that is required to be in a municipal plan if the plan is to meet the "determination" standards established by the Vermont Department of Public Service.

Table 1A: Current Municipal Transportation Ene	rgy Use
Transportation Data	Municipal Data
Total # of Passenger Vehicles (ACS 2011-2015)	1,213
Average Miles per Vehicle (Vtrans)	11,356
Total Miles Traveled	13,774,828
Realized MPG (2013 - VTrans 2015 Energy Profile)	18.6
Total Gallons Use per Year	740,582
Transportation BTUs (Billion)	89
Average Cost per Gallon of Gasoline (RPC)	2.31
Gasoline Cost per Year	1,710,745

This table uses data from the American Community Survey (ACS) and Vermont Agency of Transportation (VTrans) to calculate current transportation energy use and energy costs in the municipality.

Tal	ble 1B: Current M	unicipal Resider	itial Heating Energy	Use
Fuel Source	Municipal Households (ACS 2011-2015)	% of Municipal Households	Municipal Square Footage Heated	Municipal BTU (in Billions)
Natural Gas	2	0.3%	3,808	0
Propane	46	7.9%	77,728	5
Electricity	0	0.0%	0	0
Fuel Oil	320	55.3%	557,184	33
Coal	0	0.0%	0	0
Wood	192	33.2%	356,416	21
Solar	0	0.0%	0	0
Other	19	3.3%	36,176	2
No Fuel	0	0.0%	0	0
Total	579	100.0%	1,031,312	62

This table displays data from the ACS that estimates current municipal residential heating energy use.

Table 10	C: Current Munic	cipal Commercial En	ergy Use
	Commercial Establishments in Municipality (VT DOL)	Estimated Thermal Energy BTUs per Commercial Establishment (in Billions) (VDPS)	Estimated Thermal Energy BTUs by Commercial Establishments in Municipality (in Billions)
Municipal Commercial Energy Use	8	0.725	6

The table uses data available from the Vermont Department of Labor (VT DOL) and the Vermont Department of Public Service (DPS) to estimate current municipal commercial establishment energy use in the municipality.

Table 1D: Current Electricit	y Use
Use Sector	Current Electricity Use
Residential (kWh)	5,204,829
Commercial and Industrial (kWh)	2,052,586
Total (kWh)	7,257,415

This table displays current electricity use within the municipality. This data is available from Efficiency Vermont (EVT).

Table 1E: Residential Thermal Effi	ciency Tai	gets	
	2025	2035	2050
"Residential - Increased Efficiency and Conservation (% of municipal households to be weatherized)"	5%	16%	78%

This table displays targets for thermal efficiency of residential structures. The data is based on a methodology developed by DPS using data available from the regional Long-range Energy Alternatives Planning (LEAP) analysis and ACS. The data in this table represents the percentage of municipal households that will need to be weatherized in the target years. The target is cumulative.

Table 1F: Commercial Thermal E	fficiency To	arget	
	2025	2035	2050
"Commercial - Increased Efficiency and Conservation (% of commercial establishments to be weatherized)"	25%	25%	73%

This table shows the same information as Table 1E, but sets a target for commercial thermal efficiency and weatherization. Information from the VT DOL is required to complete this target. The target is cumulative.

Table 1G: Thermal Fuel Switching (Residential and Commercial) – Wood Systems

	2025	2035	2050
New Efficient Wood Heat Systems (in units)	0	0	-1

This table provides a target for new wood heating systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 1H: Thermal Fuel Switching (Residential and Commercial) – Heat Pumps

	2025	2035	2050
New Heat Pumps (in units)	69	158	295

This table provides a target for new heat pump systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 11: Electricity Efficiency Targets

	2025	2035	2050
Increase Efficiency and Conservation (BTUs)	25.2%	48.3%	100.7%

Data in this table displays a target for increased electricity efficiency and conservation during the target years. This target will be met through conversions to high efficiency appliances, electric heat pumps, and electric light-duty vehicles. These targets were developed using regional LEAP analysis. The target is cumulative.

Table 1J: Use of Renewables - Transportation

	2025	2035	2050
Renewable Energy Use - Transportation (BTUs)	5.3%	23.5%	86.8%

This data displays targets for the percentage of transportation energy use coming from renewable sources during each target year. This target will be met through conversions to electric light-duty vehicles and biodiesel heavy-duty vehicles. This data was developed using the LEAP analysis. The target is cumulative.

Table 1K: Use of Renewables – Heating			
	2025	2035	2050
Renewable Energy Use - Heating (BTUs)	47.0%	60.8%	88.9%

This data displays targets for the percentage of heating energy use coming from renewable sources during each target year. This target will be met through conversions to electric heat pumps and high efficiency wood heating systems. This data was developed using information from the LEAP analysis. The target is cumulative.

Table 1L: Use of Renewables - Electricity				
2025 2035 2050				
Renewable Energy Use - Electricity (MWh) 8,806.2 17,612.4 26,68				

This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1Q. The target is cumulative.

Table 1M: Transportation Fuel Switching Targets – Electric Vehicles			
	2025	2035	2050

Electric Vehicles 106 795 1,891

This tables displays a target for switching from fossil fuel based vehicles (gasoline and diesel) to electric vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

Table 1N: Trans	portation Fue	I Switchina	Targets -	Biodiesel
		$\boldsymbol{\mathcal{J}}$	\mathcal{L}	

	2025	2035	2050
Biodiesel Vehicles	75	147	278

This tables displays a target for switching from fossil fuel based vehicles to biodiesel-powered vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

Table 10: Existing Renewable Generation			
Renewable Type	MW	MWh	
Solar	0.07	85.85	
Wind	0.01	29.13	
Hydro	0.00	0.00	
Biomass	0.60	2,454.55	
Other	0.00	0.00	
Total Existing Generation	0.68	2,569.53	

Table 10 shows existing renewable generation in the municipality, in MW and MWh, based on information available from the Vermont Department of Public Service.

Table 1P: Renewable Generation Potential			
Renewable Type	MW	MWh	
Rooftop Solar	1	759	
Ground-mounted Solar	1,056	1,294,707	
Wind	22	67,567	
Hydro	0.004	14	
Biomass and Methane	0	0	
Other	0	0	
Total Renewable Generation Potential	1,078	1,363,047	

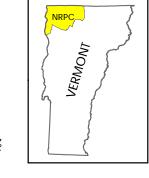
Renewable generation potential is based on mapping completed by the regional planning commission that is based on the Municipal Determination Standards and associated guidance documents developed by DPS. The renewable generation potential is expressed in MW and MWh by the type of renewable resource (solar, wind, hydro, etc.).

Table 10: Renewable Generation Targets

	2025	2035	2050
Total Renewable Generation Target (in MWh)	8,806.19	17,612.39	26,685.43

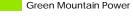
This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1L.

Table 1R: Sufficient Land?


	Y/N
Solar	Υ
Wind	Υ

This table shows whether or not there is sufficient land in the municipality to meet the renewable generation targets based on the renewable generation potential in the municipality.

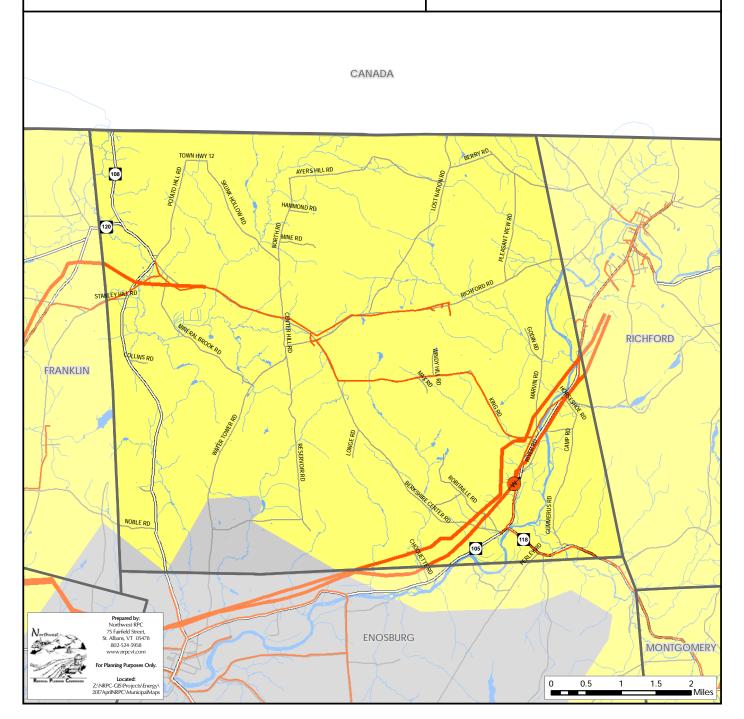
Utility Service Areas


Berkshire, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Utility Service Area Features



Substation

Swanton Village Electric Vermont Electric Co-op

3 Phase Power Line Transmission Line

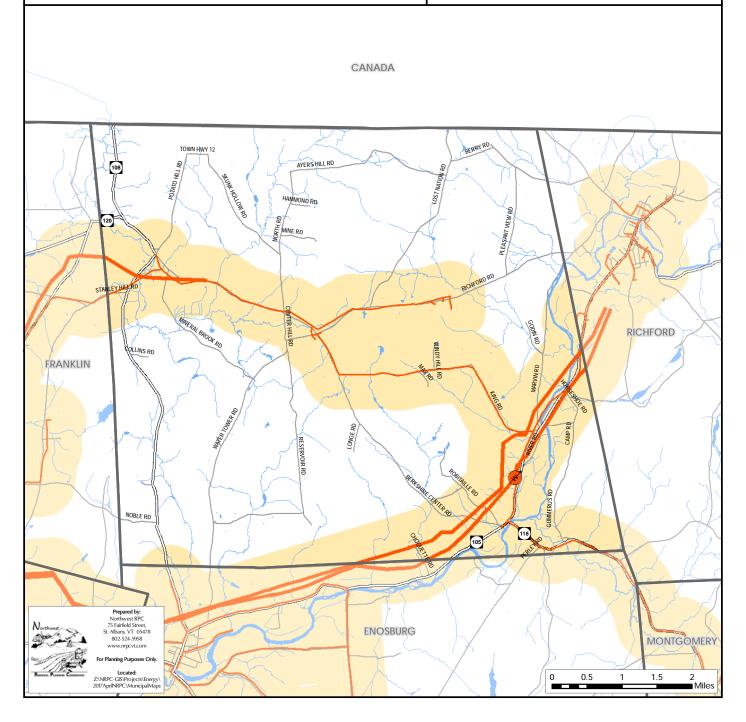
Enosburg Falls Electric



Transmission & 3 Phase **Power Infrastructure**

Berkshire, Vermont Act 174
The Energy Development
Improvement Act of 2016

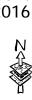
This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "sitting maps."

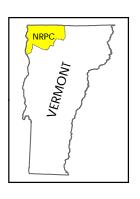

Legend

Substation

3 Phase Power Line

Transmission Line


1/2 Mile Buffer (3 Phase Power Line & Transmission Line)

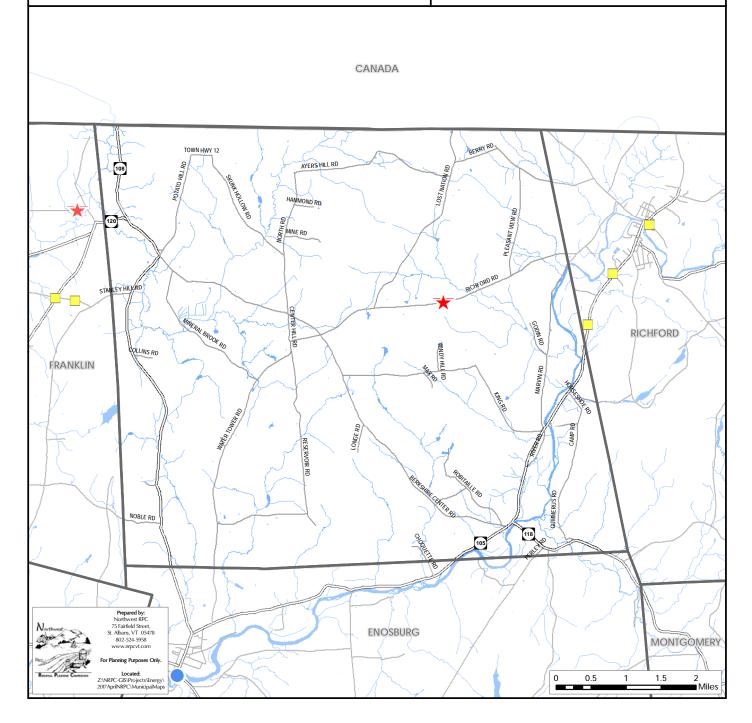


Existing Generation Facilities

Berkshire, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend


Biomass Facility

Hydro Facility

Solar Facility

Wind Facility

Note: Only generators 15kW are shown on the map. A full list of all generators is available.

Hydro

Berkshire, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipallities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Substation

3 Phase Power Line

Transmission Line

Designated Outstanding Resource Water

Known Constraint - Designated National Wild & Scenic River

Possible Constraint -Stressed or Impaired Water

Possible Constraint - RINAs

Potential Hydroelectric Facility

< 50 kW Capacity</p>

> 50 kW Capacity

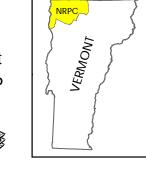
High Hazard with < 50 kW Capacity

High Hazard with > 50 kW Capacity

Operating Hydroelectric Facility

Dam not on National Wild and Scenic River

Dam on National Wild and Scenic River


Sources: VCGI
Disclaimer: The accuracy of information presented is determined by its sources. Errors and omissions may exist. The Northwest
RPC is not responsible for these. Questions of on-the-ground location can be resolved by site inspections and/or surveys by a
registered surveyor. This map is not sufficient for delineation of features on-the-ground. This map identifies the presence of
features, and may indicate relationships between features, but is not a replacement for surveyed information or engineering

CANADA TOWN HWY 12 AYERS HILL RD MOND RD MINE RD MMERAL BROOK RD RICHFORD EPLLINS RD FRANKLIN NOBLE RD **ENOSBURG** MONTGOMERY Located: Z:\NRPC-GIS\Projects\Energy\ 2017AprilNRPC\MunicipalMaps 0.5

Solar

Berkshire, Vermont Act 174 The Energy Development Improvement Act of 2016

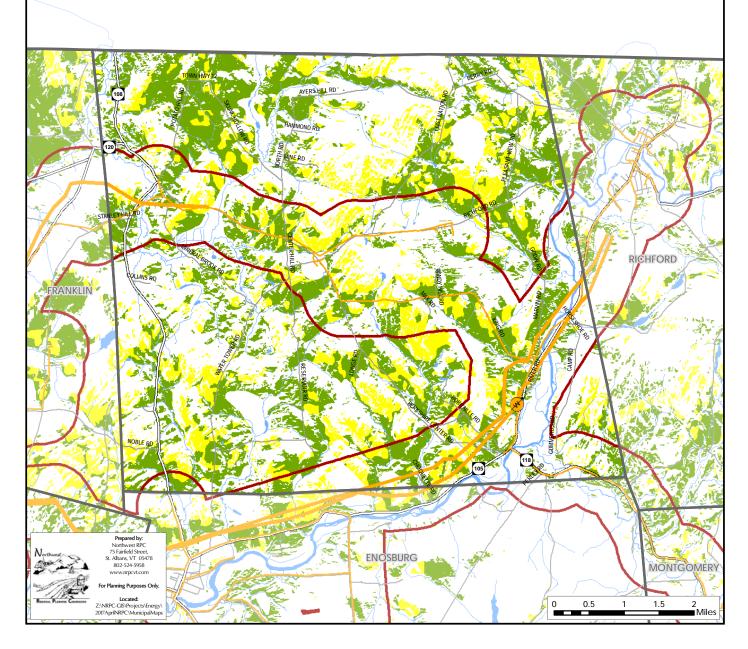
This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "sitting maps."

Legend

Substation

3 Phase Power Line

Transmission Line


1/2 Mile Buffer (3 Phase Power Line & Transmission Line)

Prime Solar/No Known Constraints

Base Solar/Possible Constraints

Sources: VCGI
Disclaimer: The accuracy of information presented is determined by its sources. Errors and omissions may exist. The Northwest RPC is not responsible for these. Questions of on-the-ground location can be resolved by site inspections and/or surveys by a registered surveyor. This map is not sufficient for delineation of features on-the-ground. This map identifies the presence of features, and may indicate relationships between features, but is not a replacement for surveyed information or engineering studies.

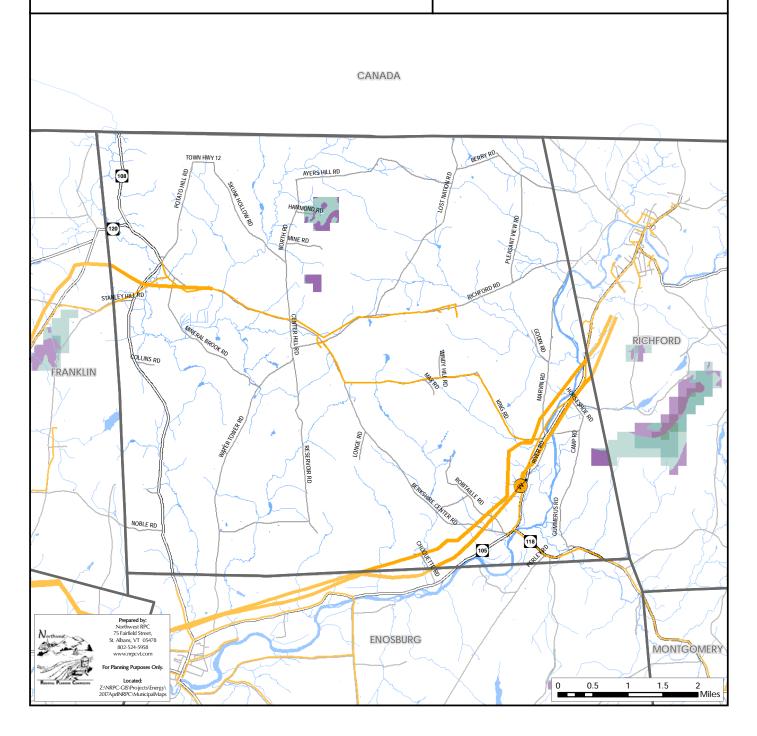
CANADA

Wind

Berkshire, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-spectic investigation for a proposed facility and cannot be used of as "siting maps."

Legend

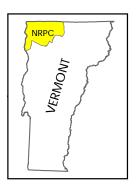

Substation

3 Phase Power Line

Transmission Line Prime Wind

Areas of high wind potential and no known constraints. Darker areas have higher wind speeds.

Base Wind Areas of high wind potential and a presence of possible constraints. Darker areas have higher wind speeds.



Woody Biomass

Berkshire, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-spectic investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Biomass System

Cow Power

Substation

3 Phase Power Line

Transmission Line

Prime Woody Biomass/No Known Constraints

Base Woody Biomass/Possible Constraints

Sources: VCGI
Disclaimer: The accuracy of information presented is determined by its sources. Errors and omissions may exist. The Northwest RPC is not responsible for these. Questions of on-the-ground location can be resolved by site inspections and/or surveys by a registered surveyor. This map is not sufficient for delineation of features on-the-ground. This map identifies the presence of features, and may indicate relationships between features, but is not a replacement for surveyed information or engineering studies.

CANADA RICHFORD FRANKLIN **ENOSBURG** MONTGOMERY Located: Z:\NRPC-GIS\Projects\Energy' 2017AprilNRPC\MunicipalMap: Miles

		All Generator	All Generators in Municipality			
Category	Sub - Category	Organization Type	Address	City	CPG Number	Capacity kW
Biomass	Anaerobic Digester	Farm	1954 Richford Road	Berkshire		009
Solar	Ground-mounted PV: Pole	Residential	3512 Berkshire Ctr. Road	Berkshire	2891	8.5
Solar	Ground-mounted PV: Pole	Residential	1856 Reservoir Rd	Berkshire	3719	7.5
Solar	Hot Water	Residential	1071 Richford Road	Berkshire		
Solar	Roof-Mounted PV	Residential	3440 Water Tower Rd	Berkshire	2687	11.2
Solar	Roof-Mounted PV	Residential	227 Horse Shoe Rd	Berkshire	9079	10
Solar	Roof-Mounted PV	Residential	4730 West Berkshire Rd	Berkshire		8.9
Solar	Roof-Mounted PV	Residential	1179 Mineral Brook Rd	Berkshire	2006	2
Solar	Roof-Mounted PV	Residential	971 King Rd	Berkshire	5033	10
Solar	Roof-Mounted PV	Residential	1376 Bershire Ctr. Road	Berkshire	7295	8.2
Wind	Small Wind	Residential	281 Hammond Road	Berkshire	525	9.5
Wind	Small Wind	Farm	1 Magoon Road	Berkshire	386	9.5

Municipal Analysis & Targets - Enosburgh

The following is an explanation of the municipal energy data compiled by Northwest Regional Planning Commission (NRPC). The intent of the municipal energy data is to provide the municipalities with data required to ensure compliance with the requirements of Act 174 and "Enhanced Energy Planning" (24 V.S.A. 4352). The following tables contain data that estimates

current energy use and provides targets for future energy use across all sectors (transportation, heating, and electricity). It also sets targets for renewable energy generation within the municipality.

This data is meant to be a starting point for the municipality to begin planning its energy future and to talk about the changes that may need to occur within the municipality to ensure that local, regional and state energy goals are met. This includes the State of Vermont's goal to have 90% of all energy demand be met from renewable sources by 2050.

Figure 1 - Data Sources

ACS - American Community Survey
DOL -Vermont Department of Labor
DPS - Vermont Department of Public Service
EIA - Energy Information Administration
EVT - Efficiency Vermont
LEAP - Long-Range Energy Alternatives Planning
VEIC - Vermont Energy Investment Corporation
VTrans - Vermont Agency of Transportation

Data Sources

Estimates of current energy use consist primarily of data available from the American Community Survey (ACS), the Vermont Agency of Transportation (VTrans), the Vermont Department of Labor (DOL), and the Vermont Department of Public Service (DPS). Targets for future energy use are reliant upon the Long-range Energy Alternatives Planning (LEAP) analysis for the region completed the Vermont Energy Investment Corporation (VEIC). Targets for future energy generation have come from the regional planning commission and DPS. For more information on LEAP, see the Northwest Regional Energy Plan (www.nrpcvt.com). Targets for both future energy use and energy generation have been generally developed using a "top down" method of disaggregating regional data to the municipal level.

It is possible to develop "bottom up" data. For those municipalities interested in that approach, please see the Department of Public Service's Analysis and Targets Guidance (http://publicservice.vermont.gov/content/act-174-recommendations-and-determination-standards).

Please remember that the targets established by LEAP represent only one way to achieve energy goals. There may several other similar pathways that a municipality may choose to take in order to meet the 90x50 goal.

Below is a worksheet by worksheet explanation of the Municipal Template spreadsheet:

1. Municipal Data Summary

The following tables summarize all data that is required to be in a municipal plan if the plan is to meet the "determination" standards established by the Vermont Department of Public Service.

Table 1A: Current Municipal Transportation Energy Use			
Transportation Data	Municipal Data		
Total # of Passenger Vehicles (ACS 2011-2015)	2,090		
Average Miles per Vehicle (Vtrans)	11,356		
Total Miles Traveled	23,734,040		
Realized MPG (2013 - VTrans 2015 Energy Profile)	18.6		
Total Gallons Use per Year	1,276,024		
Transportation BTUs (Billion)	154		
Average Cost per Gallon of Gasoline (RPC)	2.31		
Gasoline Cost per Year	2,947,615		

This table uses data from the American Community Survey (ACS) and Vermont Agency of Transportation (VTrans) to calculate current transportation energy use and energy costs in the municipality.

Table 1B: Current Municipal Residential Heating Energy Use

ıa	ble 1b. Culterit M	unicipal Residen	mai neamig thergy	USE
Fuel Source	Municipal Households (ACS 2011-2015)	% of Municipal Households	Municipal Square Footage Heated	Municipal BTU (in Billions)
Natural Gas	127	10.8%	191,120	11
Propane	128	10.9%	202,176	12
Electricity	16	1.4%	28,352	2
Fuel Oil	557	47.6%	881,008	53
Coal	7	0.6%	8,400	1
Wood	316	27.0%	572,800	34
Solar	0	0.0%	0	0
Other	20	1.7%	31,744	2
No Fuel	0	0.0%	0	0

This table displays data from the ACS that estimates current municipal residential heating energy use.

100.0%

1,171

Total

115

1,915,600

Table 1C: Current Municipal Commercial Energy Use						
	Commercial Establishments in Municipality (VT DOL)	Estimated Thermal Energy BTUs per Commercial Establishment (in Billions) (VDPS)	Estimated Thermal Energy BTUs by Commercial Establishments in Municipality (in Billions)			
Municipal Commercial Energy Use	89	0.725	65			

The table uses data available from the Vermont Department of Labor (VT DOL) and the Vermont Department of Public Service (DPS) to estimate current municipal commercial establishment energy use in the municipality.

Table 1D: Current Electricity Use			
Use Sector	Current Electricity Use		
Residential (kWh)	10,526,520		
Commercial and Industrial (kWh)	22,835,018		
Total (kWh)	33,361,538		

This table displays current electricity use within the municipality. This data is available from Efficiency Vermont (EVT).

Table 1E: Residential Thermal Efficiency Targets				
	2025	2035	2050	
"Residential - Increased Efficiency and Conservation (% of municipal households to be weatherized)"	5%	16%	78%	

This table displays targets for thermal efficiency of residential structures. The data is based on a methodology developed by DPS using data available from the regional Long-range Energy Alternatives Planning (LEAP) analysis and ACS. The data in this table represents the percentage of municipal households that will need to be weatherized in the target years. The target is cumulative.

Table 1F: Commercial Thermal Efficiency Target				
	2025	2035	2050	
"Commercial - Increased Efficiency and Conservation (% of commercial establishments to be weatherized)"	25%	25%	73%	

This table shows the same information as Table 1E, but sets a target for commercial thermal efficiency and weatherization. Information from the VT DOL is required to complete this target. The target is cumulative.

Table 1G: Thermal Fuel Switching (Residential and Commercial) – Wood Systems

	2025	2035	2050
New Efficient Wood Heat Systems (in units)	6	16	59

This table provides a target for new wood heating systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 1H: Thermal Fuel Switching (Residential and Commercial) – Heat Pumps

	2025	2035	2050
New Heat Pumps (in units)	122	293	578

This table provides a target for new heat pump systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 11: Electricity Efficiency Targets

	2025	2035	2050
Increase Efficiency and Conservation (BTUs)	25.2%	48.3%	100.7%

Data in this table displays a target for increased electricity efficiency and conservation during the target years. This target will be met through conversions to high efficiency appliances, electric heat pumps, and electric light-duty vehicles. These targets were developed using regional LEAP analysis. The target is cumulative.

Table 1J: Use of Renewables - Transportation

	2025	2035	2050
Renewable Energy Use - Transportation (BTUs)	12.4%	35.7%	91.7%

This data displays targets for the percentage of transportation energy use coming from renewable sources during each target year. This target will be met through conversions to electric light-duty vehicles and biodiesel heavy-duty vehicles. This data was developed using the LEAP analysis. The target is cumulative.

Table 1K: Use of Renewables - Heating				
	2025	2035	2050	
Renewable Energy Use - Heating (BTUs)	44.3%	57.3%	85.0%	

This data displays targets for the percentage of heating energy use coming from renewable sources during each target year. This target will be met through conversions to electric heat pumps and high efficiency wood heating systems. This data was developed using information from the LEAP analysis. The target is cumulative.

Table 1L: Use of Renewables – Electricity					
	2025 2035 2050				
Renewable Energy Use - Electricity (MWh)	7,188.4	14,376.8	21,783.1		

This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1Q. The target is cumulative.

Table 1M: Transportation Fuel Switching Ta	argets - Ele	ctric Vehic	cles
	2025	2035	2050
Electric Vehicles	183	1,369	3,258

This tables displays a target for switching from fossil fuel based vehicles (gasoline and diesel) to electric vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

Table 1N: Transportation Fuel Switchin	g Targets -	- Biodiesel	
	2025	2035	2050
Biodiesel Vehicles	493	984	1,906

This tables displays a target for switching from fossil fuel based vehicles to biodiesel-powered vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

Table 10: Existing Renewable Generation			
Renewable Type	MW	MWh	
Solar	0.29	355.66	
Wind	0.00	8.58	
Hydro	2.00	7,008.00	
Biomass	0.00	0.00	
Other	0.00	0.00	
Total Existing Generation	2.29	7,372.24	

Table 10 shows existing renewable generation in the municipality, in MW and MWh, based on information available from the Vermont Department of Public Service.

Table 1P: Renewable Generation Potential				
Renewable Type	MW	MWh		
Rooftop Solar	2	1,982		
Ground-mounted Solar	461	565,299		
Wind	176	539,831		
Hydro	0.004	14		
Biomass and Methane	0	0		
Other	0	0		
Total Renewable Generation Potential	639	1,107,125		

Renewable generation potential is based on mapping completed by the regional planning commission that is based on the Municipal Determination Standards and associated guidance documents developed by DPS. The renewable generation potential is expressed in MW and MWh by the type of renewable resource (solar, wind, hydro, etc.).

Table 10: Renewable Generation Targets

	2025	2035	2050
Total Renewable Generation Target (in MWh)	7,188.41	14,376.83	21,783.07

This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1L.

Table 1R: Sufficient Land?

	Y/N
Solar	Υ
Wind	Υ

This table shows whether or not there is sufficient land in the municipality to meet the renewable generation targets based on the renewable generation potential in the municipality.

Utility Service Areas Legend **Utility Service Area Features** Enosburgh, Vermont Green Mountain Power Substation Act 174 Swanton Village Electric 3 Phase Power Line The Energy Development Vermont Electric Co-op Transmission Line Improvement Act of 2016 Enosburg Falls Electric This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps." Sources: VCGI Disclaimer: The accuracy of information presented is determined by its sources. Errors and omissions may exist. The Northwest RPC is not responsible for these. Questions of on-the-ground location can be resolved by site inspections and/or surveys by a registered surveyor. This map is not sufficient for delineation of features on-the-ground. This map identifies the presence of features, and may indicate relationships between features, but is not a replacement for surveyed information or engineering studies. BERKSHIRE RICHFORD FRANKLIN HOWARD RD WOODWARD NBRHD RD SHELDON STONEHOUSE RD SAINT PIERRE RD CARPENTER RD CHESTER AARTHUR RD BORDOVILLE RD FAIRFIELD ENOSBURG MOUNTAIN RD MONTGOMERY Prepared by: Northwest RPC 75 Fairfield Street BAKERSFIELD St. Albans, VT 05478 802-524-5958 vw.nrpcvt.com Located: Z:\NRPC-GIS\Projects\Energy 2017AprilNRPC\MunicipalMap 0.5

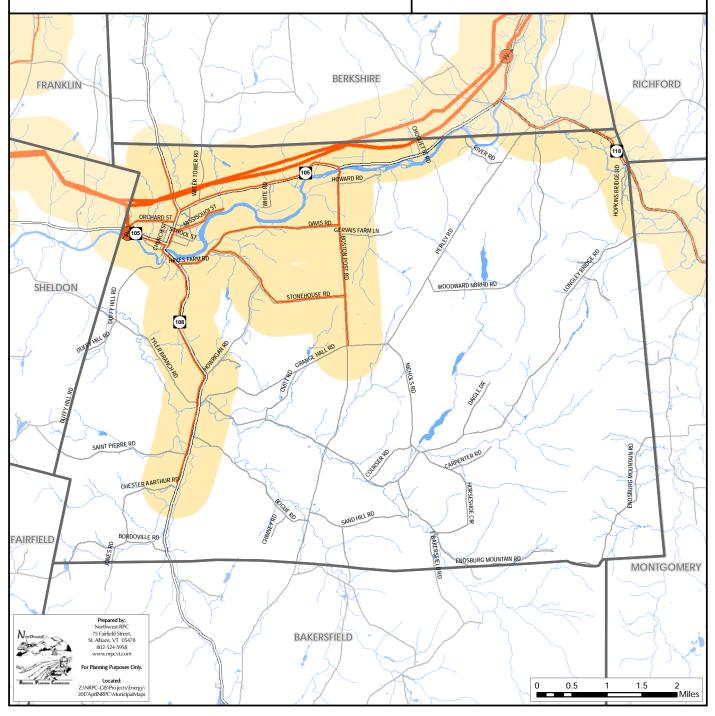
1.5

Miles

Transmission & 3 Phase Power Infrastructure

Enosburgh, Vermont Act 174 The Energy Development Improvement Act of 2016

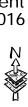
This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

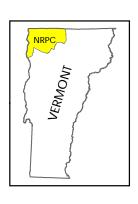

Legend

🕺 Substation

3 Phase Power Line

Transmission Line


1/2 Mile Buffer (3 Phase Power Line & Transmission Line)

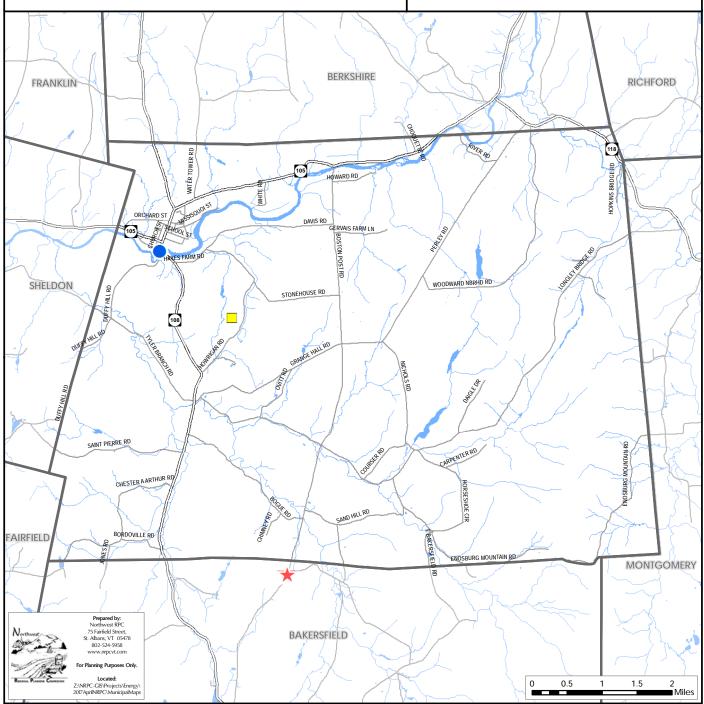


Existing Generation Facilities

Enosburgh, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

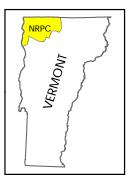

Biomass Facility

Hydro Facility

Solar Facility

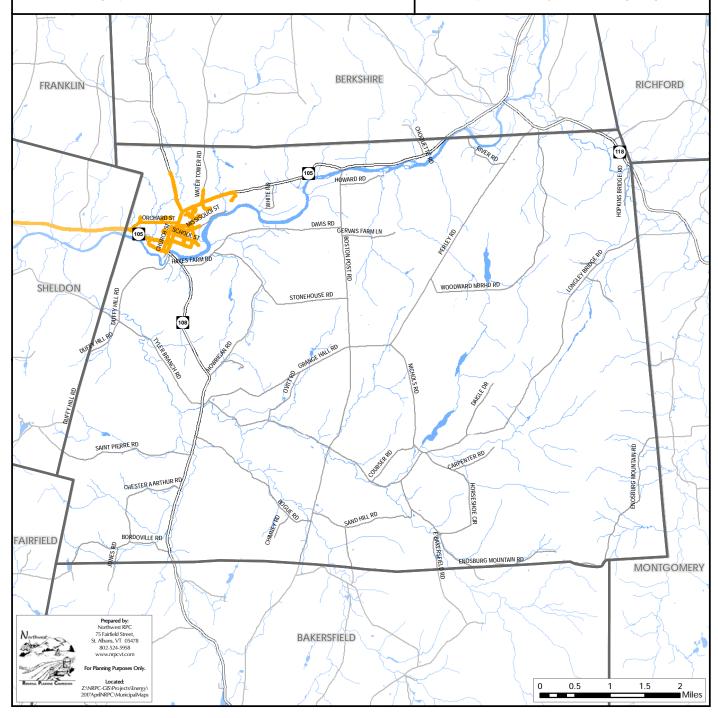
Note: Only generators 15kW are shown on the map. A full list of all generators is available.

Wind Facility



Natural Gas Lines

Enosburgh, Vermont Act 174 The Energy Development Improvement Act of 2016


This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Natural Gas Line

Hydro

Enosburgh, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Substation

3 Phase Power LineTransmission Line

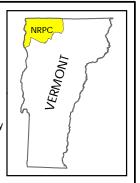
Designated Outstanding Resource Water

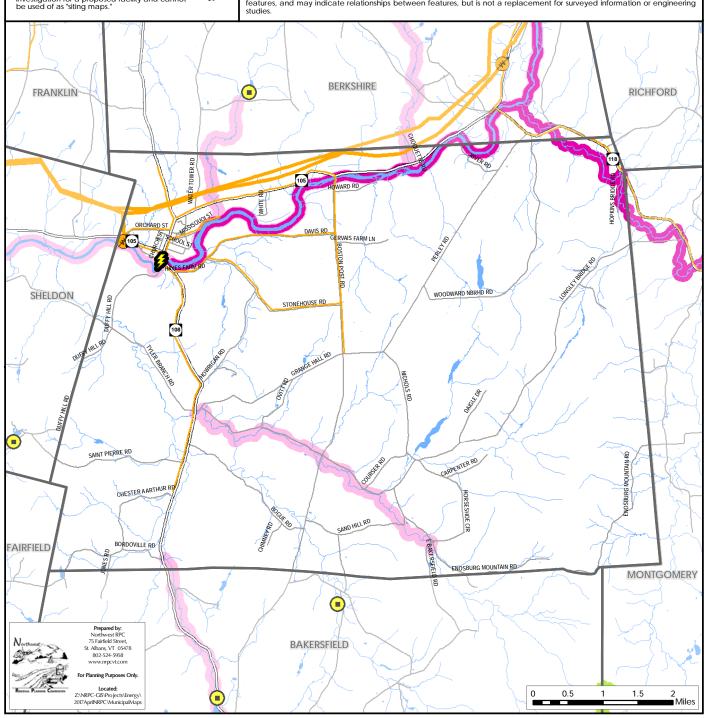
Known Constraint - Designated National Wild & Scenic River Possible Constraint -Stressed or Impaired Water

Possible Constraint - RINAs

Potential Hydroelectric Facility

< 50 kW Capacity</p>


> 50 kW Capacity


High Hazard with < 50 kW Capacity
High Hazard with > 50 kW Capacity

Operating Hydroelectric Facility

Dam not on National Wild and Scenic River

Dam on National Wild and Scenic River

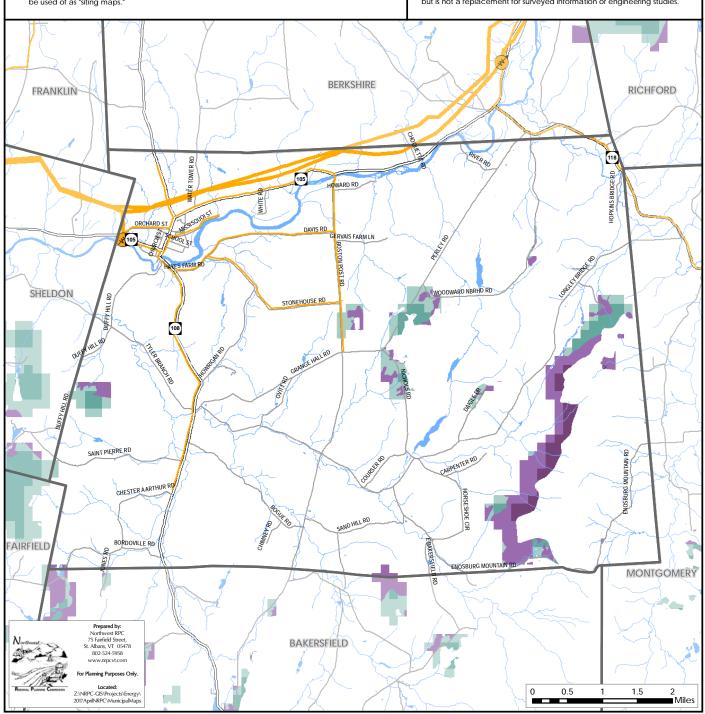
Solar Legend Substation Enosburgh, Vermont 3 Phase Power Line Act 174 Transmission Line 1/2 Mile Buffer (3 Phase Power Line & Transmission Line) The Energy Development Prime Solar/No Known Constraints Improvement Act of 2016 Base Solar/Possible Constraints This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps." Sources: VCGI Disclaimer: The accuracy of information presented is determined by its sources. Errors and omissions may exist. The Northwest RPC is not responsible for these. Questions of on-the-ground location can be resolved. by site inspections and/or surveys by a registered surveyor. This map is not sufficient for delineation of features on-the-ground. This map identifies the presence of features, and may indicate relationships between features, but is not a replacement for surveyed information or engineering studies. BERKSHIRE RICHFORD GERVAIS FARI AIRFIELI MONTGOMERY Prepared by: Northwest RPC BAKERSFIELD Located: Z:\NRPC-GIS\Projects\Energy\ 2017AprilNRPC\MunicipalMap: 0.5 Miles

Wind

Enosburgh, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

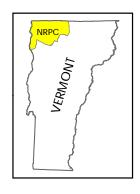

Substation

3 Phase Power Line

Transmission Line Prime Wind

Areas of high wind potential and no known constraints. Darker areas have higher wind speeds.

Base Wind Areas of high wind potential and a presence of possible constraints. Darker areas have higher wind speeds



Woody Biomass

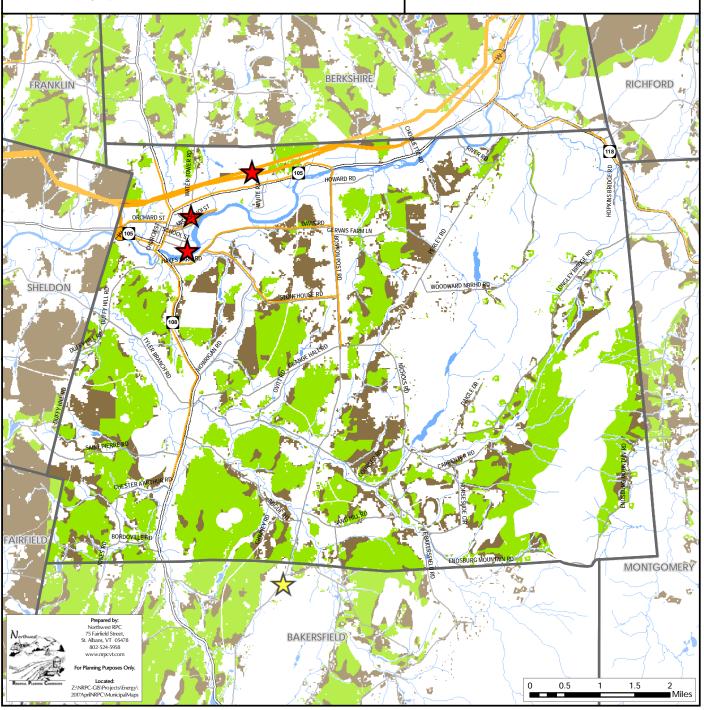
Enosburgh, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Biomass System

Cow Power


Substation

3 Phase Power Line

Transmission Line

Prime Woody Biomass/No Known Constraints

Base Woody Biomass/Possible Constraints

	A	II Generators	All Generators in Municipality			
Category	Sub - Category	Organization Type	Address	City	CPG Number	Capacity kW
Hydro	Hydropower	Business		Enosburg Falls		2000
Solar	Ground-mounted PV: Fixed Rack	Residential	3308 Sampsonville Rd	Enosburg Falls	6313	10
Solar	Ground-mounted PV: Pole	Residential	475 Nichols Rd	Enosburg Falls	6229	9
Solar	Ground-mounted PV: Pole	Residential	8333 Chester A. Arthur Rd	Enosburg Falls	3904	6.4
Solar	Ground-mounted PV: Tracker	Residential	1167 Nichols Rd	Enosburg Falls	1577	œ
Solar	Ground-mounted PV: Tracker	Residential	5587 Vermont 105	Enosburg Falls	3227	148.2
Solar	Ground-mounted PV: Tracker	Residential	2319 Longley Bridge Rd	Enosburg Falls	1092	3.8
Solar	Roof-Mounted PV	Residential	300 River Road	Enosburg Falls	1280	1.6
Solar	Roof-Mounted PV	Residential	1391 St. Pierre Road	Enosburg Falls	3441	5.6
Solar	Roof-Mounted PV	Residential	663 Sand Hill Rd	Enosburg Falls	0809	2
Solar	Roof-Mounted PV	Residential	1747 Sampsonville Rd	Enosburg Falls	3858	9
Solar	Roof-Mounted PV	Residential	1889 Davis Rd	Enosburg Falls	6209	2
Solar	Roof-Mounted PV	Residential	279 Howrigan Rd	Enosburg Falls	5801	9
Solar	Roof-Mounted PV	Residential	2852 Duffy Hill Rd	Enosburg Falls	2683	6.1
Solar	Roof-Mounted PV	Residential	4689 Boston Post Rd	Enosburg Falls	5610	10
Solar	Roof-Mounted PV	Residential	3308 Sampsonville Rd	Enosburg Falls		10
Solar	Roof-Mounted PV	Residential	138 Valentine Dr	Enosburg Falls	4190	10
Solar	Roof-Mounted PV	Residential	613 Grange Rd	Enosburg Falls	3680	9
Solar	Roof-Mounted PV	Residential	3954 Boston Post Road	Enosburg Falls	7154	9
Solar	Roof-Mounted PV	Residential	899 Sandhill Rd	Enosburg Falls	16-0304	6.5
Solar	Roof-Mounted PV	Residential	142 Champlain Street	Enosburg Falls	6962	9
Solar	Roof-Mounted PV	Residential	3430 Boston Post Road	Enosburg Falls		3.8
Solar	Roof-Mounted PV	Residential	2035 Tyler Branch Rd	Enosburg Falls	3703	10.3
Wind	Small Wind	Residential	300 River Road	Enosburg Falls	1280	2.8

Municipal Analysis & Targets - Fairfax

The following is an explanation of the municipal energy data compiled by Northwest Regional Planning Commission (NRPC). The intent of the municipal energy data is to provide the municipalities with data required to ensure compliance with the requirements of Act 174 and "Enhanced Energy Planning" (24 V.S.A. 4352). The following tables contain data that estimates

current energy use and provides targets for future energy use across all sectors (transportation, heating, and electricity). It also sets targets for renewable energy generation within the municipality.

This data is meant to be a starting point for the municipality to begin planning its energy future and to talk about the changes that may need to occur within the municipality to ensure that local, regional and state energy goals are met. This includes the State of Vermont's goal to have 90% of all energy demand be met from renewable sources by 2050.

Figure 1 - Data Sources

ACS - American Community Survey
DOL -Vermont Department of Labor
DPS - Vermont Department of Public Service
EIA - Energy Information Administration
EVT - Efficiency Vermont
LEAP - Long-Range Energy Alternatives Planning
VEIC - Vermont Energy Investment Corporation
VTrans - Vermont Agency of Transportation

Data Sources

Estimates of current energy use consist primarily of data available from the American Community Survey (ACS), the Vermont Agency of Transportation (VTrans), the Vermont Department of Labor (DOL), and the Vermont Department of Public Service (DPS). Targets for future energy use are reliant upon the Long-range Energy Alternatives Planning (LEAP) analysis for the region completed the Vermont Energy Investment Corporation (VEIC). Targets for future energy generation have come from the regional planning commission and DPS. For more information on LEAP, see the Northwest Regional Energy Plan (www.nrpcvt.com). Targets for both future energy use and energy generation have been generally developed using a "top down" method of disaggregating regional data to the municipal level.

It is possible to develop "bottom up" data. For those municipalities interested in that approach, please see the Department of Public Service's Analysis and Targets Guidance (http://publicservice.vermont.gov/content/act-174-recommendations-and-determination-standards).

Please remember that the targets established by LEAP represent only one way to achieve energy goals. There may several other similar pathways that a municipality may choose to take in order to meet the 90x50 goal.

Below is a worksheet by worksheet explanation of the Municipal Template spreadsheet:

1. Municipal Data Summary

The following tables summarize all data that is required to be in a municipal plan if the plan is to meet the "determination" standards established by the Vermont Department of Public Service.

Table 1A: Current Municipal Transportation Ene	rgy Use
Transportation Data	Municipal Data
Total # of Passenger Vehicles (ACS 2011-2015)	3,641
Average Miles per Vehicle (Vtrans)	11,356
Total Miles Traveled	41,347,196
Realized MPG (2013 - VTrans 2015 Energy Profile)	18.6
Total Gallons Use per Year	2,222,968
Transportation BTUs (Billion)	268
Average Cost per Gallon of Gasoline (RPC)	2.31
Gasoline Cost per Year	5,135,055

This table uses data from the American Community Survey (ACS) and Vermont Agency of Transportation (VTrans) to calculate current transportation energy use and energy costs in the municipality.

Tal	Table 1B: Current Municipal Residential Heating Energy Use			
Fuel Source	Municipal Households (ACS 2011-2015)	% of Municipal Households	Municipal Square Footage Heated	Municipal BTU (in Billions)
Natural Gas	75	4.3%	103,376	6
Propane	414	23.7%	729,824	44
Electricity	19	1.1%	36,176	2
Fuel Oil	859	49.2%	1,451,792	87
Coal	0	0.0%	0	0
Wood	367	21.0%	691,024	41
Solar	0	0.0%	0	0
Other	11	0.6%	20,944	1
No Fuel	0	0.0%	0	0
Total	1,745	100.0%	3,033,136	182

This table displays data from the ACS that estimates current municipal residential heating energy use.

Table 10	C: Current Munic	cipal Commercial En	ergy Use
	Commercial Establishments in Municipality (VT DOL)	Estimated Thermal Energy BTUs per Commercial Establishment (in Billions) (VDPS)	Estimated Thermal Energy BTUs by Commercial Establishments in Municipality (in Billions)
Municipal Commercial Energy Use	66	0.725	48

The table uses data available from the Vermont Department of Labor (VT DOL) and the Vermont Department of Public Service (DPS) to estimate current municipal commercial establishment energy use in the municipality.

Table 1D: Current Electricity Use		
Use Sector	Current Electricity Use	
Residential (kWh)	15,686,402	
Commercial and Industrial (kWh)	16,933,834	
Total (kWh)	32,620,236	

This table displays current electricity use within the municipality. This data is available from Efficiency Vermont (EVT).

Table 1E: Residential Thermal Efficiency Targets			
	2025	2035	2050
"Residential - Increased Efficiency and Conservation (% of municipal households to be weatherized)"	5%	16%	78%

This table displays targets for thermal efficiency of residential structures. The data is based on a methodology developed by DPS using data available from the regional Long-range Energy Alternatives Planning (LEAP) analysis and ACS. The data in this table represents the percentage of municipal households that will need to be weatherized in the target years. The target is cumulative.

Table 1F: Commercial Thermal Efficiency Target			
	2025	2035	2050
"Commercial - Increased Efficiency and Conservation (% of commercial establishments to be weatherized)"	25%	25%	73%

This table shows the same information as Table 1E, but sets a target for commercial thermal efficiency and weatherization. Information from the VT DOL is required to complete this target. The target is cumulative.

Table 1G: Thermal Fuel Switching (Residential and Commercial) – Wood Systems

	2025	2035	2050
New Efficient Wood Heat Systems (in units)	0	0	4

This table provides a target for new wood heating systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 1H: Thermal Fuel Switching (Residential and Commercial) – Heat Pumps

	2025	2035	2050
New Heat Pumps (in units)	208	477	891

This table provides a target for new heat pump systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 11: Electricity Efficiency Targets

	2025	2035	2050
Increase Efficiency and Conservation (BTUs)	25.2%	48.3%	100.7%

Data in this table displays a target for increased electricity efficiency and conservation during the target years. This target will be met through conversions to high efficiency appliances, electric heat pumps, and electric light-duty vehicles. These targets were developed using regional LEAP analysis. The target is cumulative.

Table 1J: Use of Renewables - Transportation

	2025	2035	2050
Renewable Energy Use - Transportation (BTUs)	8.2%	28.9%	89.4%

This data displays targets for the percentage of transportation energy use coming from renewable sources during each target year. This target will be met through conversions to electric light-duty vehicles and biodiesel heavy-duty vehicles. This data was developed using the LEAP analysis. The target is cumulative.

Table 1K: Use of Renewables – Heating			
	2025	2035	2050
Renewable Energy Use - Heating (BTUs)	45.7%	59.2%	87.1%

This data displays targets for the percentage of heating energy use coming from renewable sources during each target year. This target will be met through conversions to electric heat pumps and high efficiency wood heating systems. This data was developed using information from the LEAP analysis. The target is cumulative.

Table 1L: Use of Renewables – Electricity			
	2025	2035	2050
Renewable Energy Use - Electricity (MWh)	7,931.5	15,862.9	24,034.8

This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1Q. The target is cumulative.

Table 1M: Transportation Fuel Switching Targets - Electric Vehicles			
	2025	2035	2050
Electric Vehicles	319	2,386	5,675

This tables displays a target for switching from fossil fuel based vehicles (gasoline and diesel) to electric vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

Table 1N: Transportation Fuel Switching Targets – Biodiesel			
	2025	2035	2050
Biodiesel Vehicles	437	867	1,665

This tables displays a target for switching from fossil fuel based vehicles to biodiesel-powered vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

Table 10: Existing Renewable Generation			
Renewable Type	MW	MWh	
Solar	0.43	527.35	
Wind	0.003	9.20	
Hydro	3.60	12614.40	
Biomass	0.00	0.00	
Other	0.00	0.00	
Total Existing Generation	4.03	13,150.95	

Table 10 shows existing renewable generation in the municipality, in MW and MWh, based on information available from the Vermont Department of Public Service.

Table 1P: Renewable Generation Potential				
Renewable Type	MW	MWh		
Rooftop Solar	2	2,545		
Ground-mounted Solar	750	920,187		
Wind	254	778,319		
Hydro	0.012	42		
Biomass and Methane	0	0		
Other	0	0		
Total Renewable Generation Potential	1,006	1,701,093		

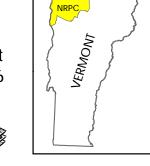
Renewable generation potential is based on mapping completed by the regional planning commission that is based on the Municipal Determination Standards and associated guidance documents developed by DPS. The renewable generation potential is expressed in MW and MWh by the type of renewable resource (solar, wind, hydro, etc.).

Table 10: Renewable Generation Targets

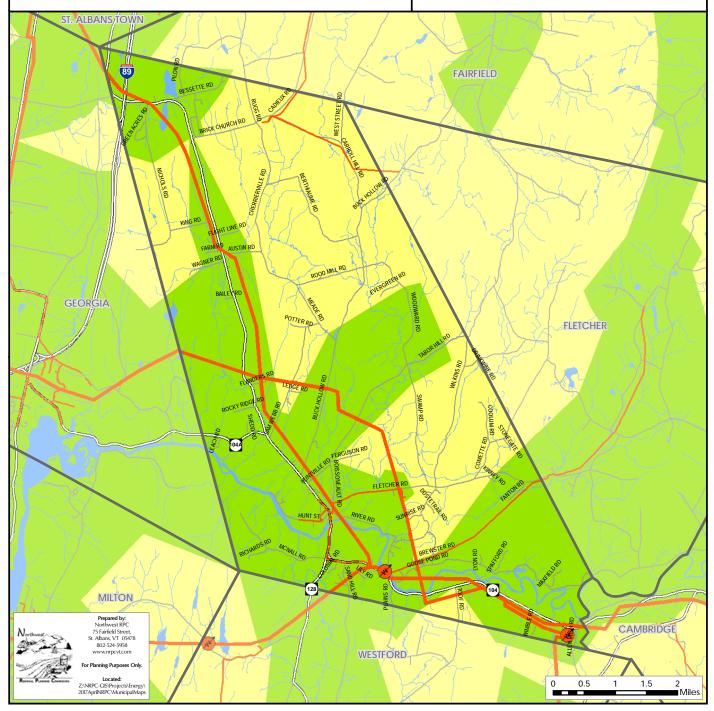
	2025	2035	2050
Total Renewable Generation Target (in MWh)	7,931.47	15,862.95	24,034.77

This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1L.

Table 1R: Sufficient Land?

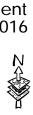

	Y/N	
Solar	Υ	
Wind	Υ	

This table shows whether or not there is sufficient land in the municipality to meet the renewable generation targets based on the renewable generation potential in the municipality.


Utility Service Areas

Fairfax, Vermont Act 174 The Energy Development Improvement Act of 2016

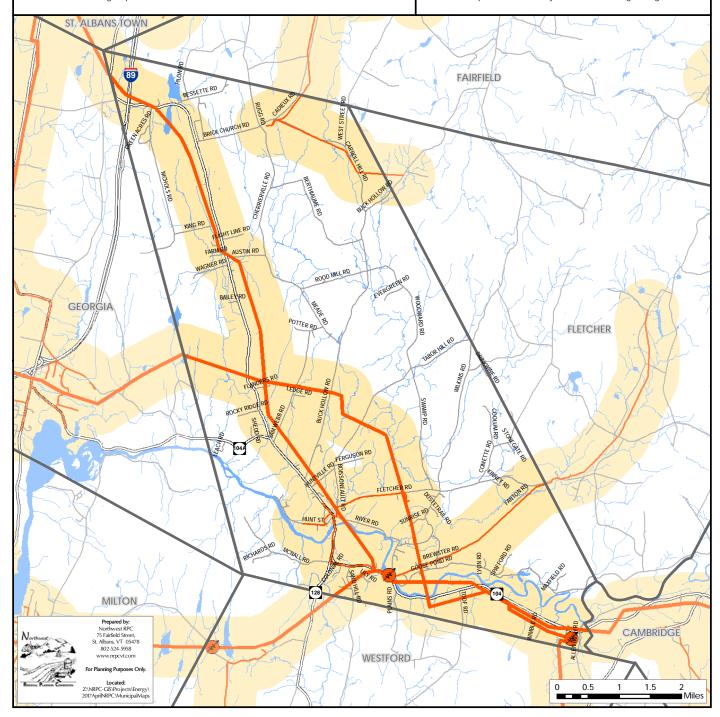
This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "sitting maps."


Legend Utility Service Area Features Green Mountain Power Substation Swanton Village Electric Vermont Electric Co-op Enosburg Falls Electric

Transmission & 3 Phase Power Infrastructure

Fairfax, Vermont Act 174 The Energy Development Improvement Act of 2016

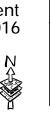
This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "sitting maps."

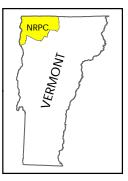

Legend

Substation

3 Phase Power Line

Transmission Line


1/2 Mile Buffer (3 Phase Power Line & Transmission Line)

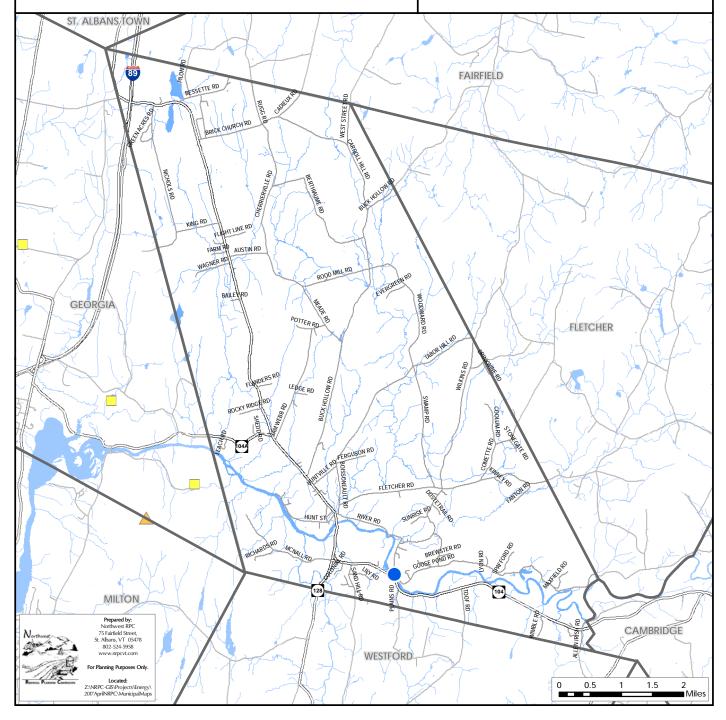


Existing Generation Facilities

Fairfax, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend


Biomass Facility

Hydro Facility

Solar Facility

Note: Only generators 15kW are shown on the map. A full list of all generators is available.

Wind Facility

Hydro

Fairfax, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Substation

3 Phase Power Line Transmission Line

Designated Outstanding Resource Water

Known Constraint - Designated National Wild & Scenic River

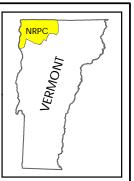
Possible Constraint -Stressed or Impaired Water Possible Constraint - RINAs

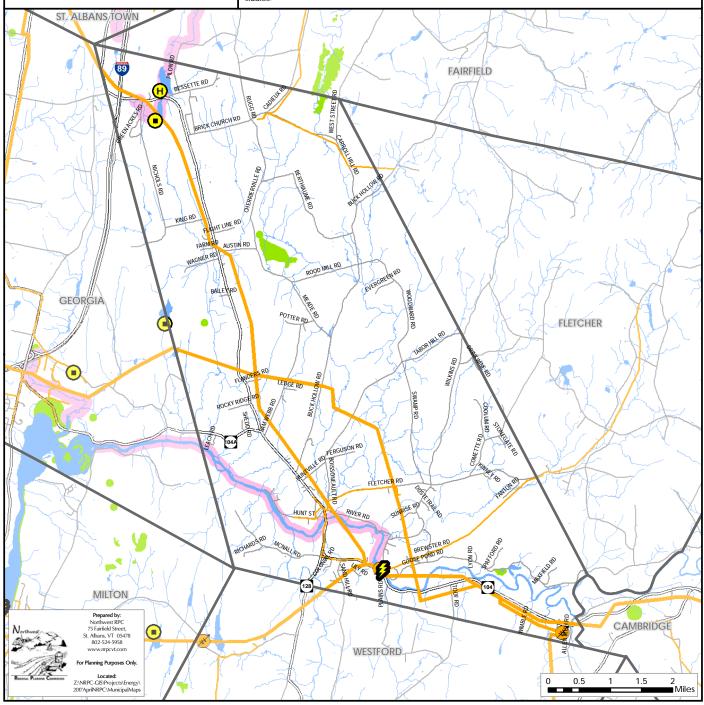
Operating Hydroelectric Facility

Potential Hydroelectric Facility

> 50 kW Capacity

High Hazard with < 50 kW Capacity


High Hazard with > 50 kW Capacity


H

< 50 kW Capacity</p>

Dam not on National Wild and Scenic River

Dam on National Wild and Scenic River



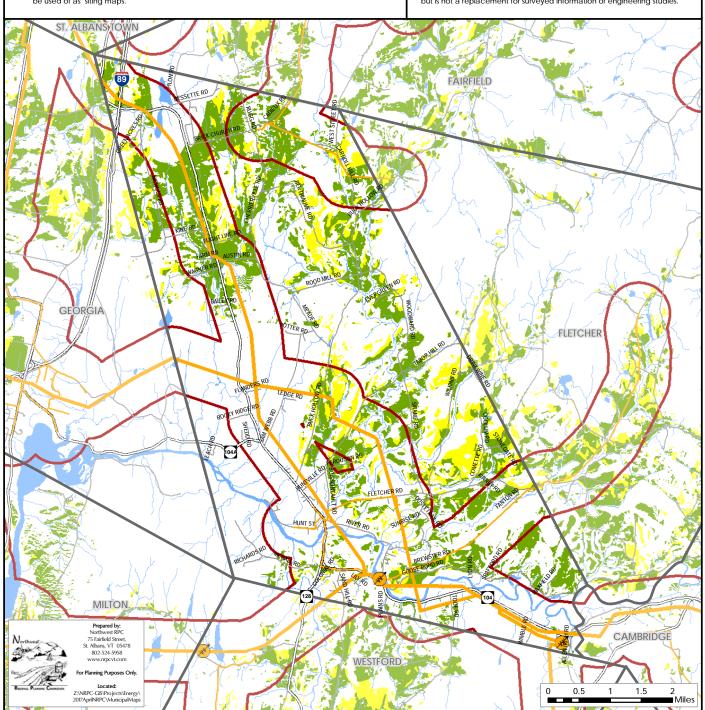
Solar

Fairfax, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "sitting maps."

Legend

Substation


3 Phase Power Line

Transmission Line

1/2 Mile Buffer (3 Phase Power Line & Transmission Line)

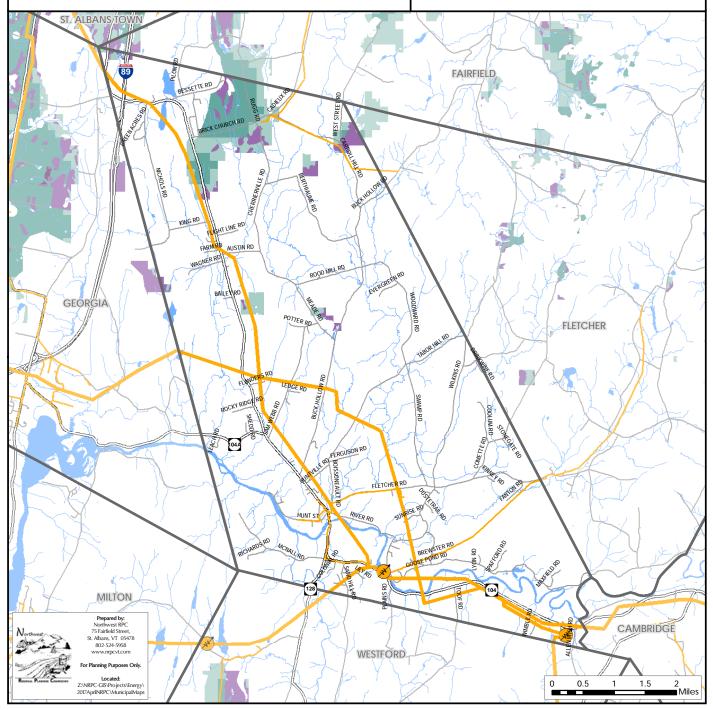
Prime Solar/No Known Constraints

Base Solar/Possible Constraints

Wind

Fairfax, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."


Legend Substation 3 Phase Power Line

Transmission Line

Prime Wind Areas of high wind potential and no known constraints.

Base Wind Areas of high wind potential and a presence of possible constraints. Darker areas have higher wind speeds.

Darker areas have higher wind speeds.

Woody Biomass

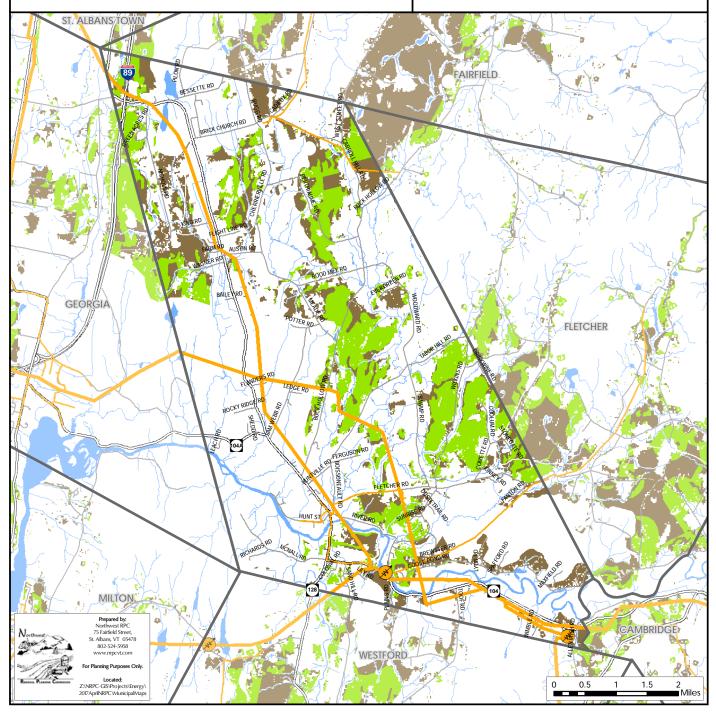
Fairfax, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Biomass System

Cow Power



Substation 3 Phase Power Line

Transmission Line Prime Woody Biomass/No Known Constraints

Base Woody Biomass/Possible Constraints

	All	All Generators in Municipality	Municipality			
Category	Sub - Category	Organization Type	Address	City	CPG Number	Capacity kW
Hydro	Hydropower	Business		Fairfax		3600
Solar	Ground-mounted PV: Fixed Rack	Residential	399 Buck Hollow Rd	Fairfax	3111	8.6
Solar	Ground-mounted PV: Fixed Rack	Residential	73 SAM WEBB RD	Fairfax	1560	4.4
Solar	Ground-mounted PV: Fixed Rack	Residential	89 Evergreen Road	Fairfax	772	3.2
Solar	Ground-mounted PV: Pole	Residential	1139 Main St	Fairfax	3406	3.3
Solar	Ground-mounted PV: Pole	Residential	86 Sam Webb Rd	Fairfax	3798	6.4
Solar	Ground-mounted PV: Pole	Residential	5 Benny Rd	Fairfax	4043	7
Solar	Ground-mounted PV: Pole	Residential	83 Ledge Rd	Fairfax	2801	7.5
Solar	Ground-mounted PV: Pole	Residential	6 Bailey Road	Fairfax	16-0489	2
Solar	Ground-mounted PV: Tracker	Residential	86 W Street Rd	Fairfax	2997	9
Solar	Ground-mounted PV: Tracker	Business	1282 Main Street	Fairfax	7001	7
Solar	Hot Water	Residential	1069 Main Street	Fairfax		
Solar	Hot Water	Residential	158 Sam Webb Road	Fairfax		
Solar	Hot Water	Residential	38 Meade Rd	Fairfax		
Solar	Hot Water	Residential	399 Buck Hollow Rd	Fairfax		
Solar	Hot Water	Residential	45 Snowcrest Road	Fairfax		
Solar	Hot Water	Residential	48 Alba Glen Road	Fairfax		
Solar	Hot Water	Residential	501 Carroll Hill Road	Fairfax		
Solar	Hot Water	Residential	609 Cherrierville Road	Fairfax		
Solar	Hot Water	Residential	61 White Pine Road	Fairfax		
Solar	Hot Water	Residential	71 Maxfield Rd	Fairfax		
Solar	Hot Water	Residential	82 Windtop Road	Fairfax		
Solar	Roof-Mounted PV	Residential	758 Fletcher Rd	Fairfax	3497	9.9
Solar	Roof-Mounted PV	Residential	6 Alexzis Rd	Fairfax	3804	2
Solar	Roof-Mounted PV	Residential	2371 Main St	Fairfax	2792	8.9
Solar	Roof-Mounted PV	Residential	287 Buck Hollow Rd	Fairfax	5749	2
Solar	Roof-Mounted PV	Residential	68 Upper Meadow Rd	Fairfax	3815	5

		All Generators in Municipality	Municipality			
Category	Sub - Category	Organization Type	Address	City	CPG Number	Capacity kW
Solar	Roof-Mounted PV	Residential	82 WINDTOP RD	Fairfax	2661	5.6
Solar	Roof-Mounted PV	Residential	2227 Main St	Fairfax	2653	3.7
Solar	Roof-Mounted PV	Residential	102 Huntville Rd	Fairfax	3512	7.5
Solar	Roof-Mounted PV	Residential	15 Cherrierville Rd	Fairfax	3748	2
Solar	Roof-Mounted PV	Residential	13 Snowcrest Rd	Fairfax	2622	2.3
Solar	Roof-Mounted PV	Residential	1789 Main St	Fairfax	5311	10
Solar	Roof-Mounted PV	Residential	1235 Main St	Fairfax	2638	4.7
Solar	Roof-Mounted PV	Residential	9 Fletcher Rd	Fairfax	6061	9
Solar	Roof-Mounted PV	Residential	137 West Street Rd	Fairfax	2716	3.7
Solar	Roof-Mounted PV	Residential	41 Maple Hill Rd	Fairfax	3538	6.6
Solar	Roof-Mounted PV	Residential	184 Mead Rd	Fairfax	3698	4.6
Solar	Roof-Mounted PV	Residential	296 Woodward Road	Fairfax		2
Solar	Roof-Mounted PV	Residential	178 Wilkins Rd	Fairfax	4002	œ
Solar	Roof-Mounted PV	Residential	14 Hawley Rd	Fairfax	3939	7.7
Solar	Roof-Mounted PV	Residential	17 Michelle Rd	Fairfax	3671	4.6
Solar	Roof-Mounted PV	Residential	20 Delorme Road	Fairfax	5954	3.8
Solar	Roof-Mounted PV	Residential	20 Summit View St	Fairfax	2863	5.6
Solar	Roof-Mounted PV	Residential	16 King Road	Fairfax	3272	5.3
Solar	Roof-Mounted PV	Residential	2855 Main Street	Fairfax	3496	4.3
Solar	Roof-Mounted PV	Residential	32 Audelin Woods Rd	Fairfax	3605	4.6
Solar	Roof-Mounted PV	Residential	281 River Rd	Fairfax	909	3
Solar	Roof-Mounted PV	Residential	2757 Main St	Fairfax	4156	2
Solar	Roof-Mounted PV	Residential	34 Windtop Rd	Fairfax	5294	7.6
Solar	Roof-Mounted PV	Residential	78 Rood Mill Road	Fairfax	4244	9
Solar	Roof-Mounted PV	Residential	26 Richards Rd	Fairfax	2804	3.7
Solar	Roof-Mounted PV	Residential	34 Dewey Rd	Fairfax	5614	3.8
Solar	Roof-Mounted PV	Residential	26 Summit View St	Fairfax	3508	8

	A	All Generators in Municipality	n Municipality			
Category	Sub - Category	Organization Type	Address	City	CPG Number	Capacity kW
Solar	Roof-Mounted PV	Residential	272 Wilkins Rd	Fairfax	3771	2
Solar	Roof-Mounted PV	Residential	23 Summit View St	Fairfax	3645	8.9
Solar	Roof-Mounted PV	Residential	47 Browns River Rd	Fairfax	4217	2.7
Solar	Roof-Mounted PV	Residential	67 White Pine Rd	Fairfax	43	3.8
Solar	Roof-Mounted PV	Residential	36 Craftsfield Rd	Fairfax	16-0261	വ
Solar	Roof-Mounted PV	Residential	769 Goose Pond Rd	Fairfax	6446	9
Solar	Roof-Mounted PV	Residential	1979 Main Street	Fairfax	6834	4
Solar	Roof-Mounted PV	Residential	42 Crystal Dr	Fairfax		3.6
Solar	Roof-Mounted PV	Residential	147 Nichols Rd	Fairfax	7031	8
Solar	Roof-Mounted PV	Residential	37 Lochmoor Rd	Fairfax	5253	9
Solar	Roof-Mounted PV	Residential	51 Richards Road	Fairfax	6902	വ
Solar	Roof-Mounted PV	Residential	416 Carroll Hill Rd	Fairfax	8029	4
Solar	Roof-Mounted PV	Residential	45 Lochmoor Rd	Fairfax	16-0333	2
Solar	Roof-Mounted PV	Residential	351 Buck Hollow Road	Fairfax	16-0129	7.6
Solar	Roof-Mounted PV	Residential	161 Bessette Road	Fairfax	9689	11
Solar	Roof-Mounted PV	Residential	1209 Main St	Fairfax	16-0389	2
Solar	Roof-Mounted PV	Residential	352 Sam Webb Road	Fairfax	7266	7.6
Solar	Roof-Mounted PV	Residential	28 Old Academy Street	Fairfax	16-0674	3.8
Solar	Roof-Mounted PV	Residential	6 School St	Fairfax		3.6
Solar	Roof-Mounted PV	Residential	58 Upper Meadow Road	Fairfax		3.8
Solar	Roof-Mounted PV	Residential	11 Michelle Rd	Fairfax	16-0686	4.2
Solar	Roof-Mounted PV	Residential	183 Tabor Hill Road	Fairfax	7265	2
Solar	Roof-Mounted PV	Residential	464 Nichols Road	Fairfax	7216	11.4
Solar	Roof-Mounted PV	Residential	10 Nichols Rd	Fairfax		12
Solar	Roof-Mounted PV	Residential	244 Sam Webb Road	Fairfax	7209	7
Solar	Roof-Mounted PV	Residential	28 Rowland Rd	Fairfax	16-0321	2
Solar	Roof-Mounted PV	Residential	3 Hillcrest Road	Fairfax		11.4

	A	II Generators in Municipality	Municipality			
Category	Sub - Category	Organization Type	Address	City	CPG Number	Capacity kW
Solar	Roof-Mounted PV	Residential	74 Windtop Rd	Fairfax	16-1104	4.95
Solar	Roof-Mounted PV	Residential	33 Windtop Rd	Fairfax	16-1447	8.4
Solar	Roof-Mounted PV	Residential	15 Andbron Rd	Fairfax	16-1178	9
Solar	Roof-Mounted PV	Residential	110 Buck Hollow Rd	Fairfax	16-1549	3.6
Solar	Roof-Mounted PV	Residential	31 Hardwood Hill Rd	Fairfax	16-1506	2
Solar	Roof-Mounted PV	Residential	60 Village View Road	Fairfax	16-1495	က
Solar	Roof-Mounted PV	Residential	48 Leach Rd	Fairfax	16-1273	9
Solar	Roof-Mounted PV	Residential	12 Meadows Road	Fairfax	16-1409	4.2
Solar	Roof-Mounted PV	Residential	402 Buck Hollow Road	Fairfax		က
Solar	Roof-Mounted PV	Residential	12 Bentley Rd	Fairfax	16-0852	3.6
Solar	Roof-Mounted PV	Residential	6 King Road	Fairfax	16-1661	3.6
Solar	Roof-Mounted PV	Residential		Fairfax	0089	4.2
Wind	Small Wind	Residential	108 Bessette Road	Fairfax	119	3

Municipal Analysis & Targets - Fairfield

The following is an explanation of the municipal energy data compiled by Northwest Regional Planning Commission (NRPC). The intent of the municipal energy data is to provide the municipalities with data required to ensure compliance with the requirements of Act 174 and "Enhanced Energy Planning" (24 V.S.A. 4352). The following tables contain data that estimates

current energy use and provides targets for future energy use across all sectors (transportation, heating, and electricity). It also sets targets for renewable energy generation within the municipality.

This data is meant to be a starting point for the municipality to begin planning its energy future and to talk about the changes that may need to occur within the municipality to ensure that local, regional and state energy goals are met. This includes the State of Vermont's goal to have 90% of all energy demand be met from renewable sources by 2050.

Figure 1 - Data Sources

ACS - American Community Survey
DOL -Vermont Department of Labor
DPS - Vermont Department of Public Service
EIA - Energy Information Administration
EVT - Efficiency Vermont
LEAP - Long-Range Energy Alternatives Planning
VEIC - Vermont Energy Investment Corporation
VTrans - Vermont Agency of Transportation

Data Sources

Estimates of current energy use consist primarily of data available from the American Community Survey (ACS), the Vermont Agency of Transportation (VTrans), the Vermont Department of Labor (DOL), and the Vermont Department of Public Service (DPS). Targets for future energy use are reliant upon the Long-range Energy Alternatives Planning (LEAP) analysis for the region completed the Vermont Energy Investment Corporation (VEIC). Targets for future energy generation have come from the regional planning commission and DPS. For more information on LEAP, see the Northwest Regional Energy Plan (www.nrpcvt.com). Targets for both future energy use and energy generation have been generally developed using a "top down" method of disaggregating regional data to the municipal level.

It is possible to develop "bottom up" data. For those municipalities interested in that approach, please see the Department of Public Service's Analysis and Targets Guidance (http://publicservice.vermont.gov/content/act-174-recommendations-and-determination-standards).

Please remember that the targets established by LEAP represent only one way to achieve energy goals. There may several other similar pathways that a municipality may choose to take in order to meet the 90x50 goal.

Below is a worksheet by worksheet explanation of the Municipal Template spreadsheet:

1. Municipal Data Summary

The following tables summarize all data that is required to be in a municipal plan if the plan is to meet the "determination" standards established by the Vermont Department of Public Service.

Table 1A: Current Municipal Transportation Ene	rgy Use
Transportation Data	Municipal Data
Total # of Passenger Vehicles (ACS 2011-2015)	1,397
Average Miles per Vehicle (VTrans)	11,356
Total Miles Traveled	15,864,332
Realized MPG (2013 - VTrans 2015 Energy Profile)	18.6
Total Gallons Use per Year	852,921
Transportation BTUs (Billion)	103
Average Cost per Gallon of Gasoline (RPC)	2.31
Gasoline Cost per Year	1,970,248

This table uses data from the American Community Survey (ACS) and Vermont Agency of Transportation (VTrans) to calculate current transportation energy use and energy costs in the municipality.

Table 1B: Current Municipal Residential Heating Energy Use

Fuel Source	Municipal Households (ACS 2011-2015)	% of Municipal Households	Municipal Square Footage Heated	Municipal BTU (in Billions)
Natural Gas	3	0.5%	5,712	0
Propane	73	11.6%	119,984	7
Electricity	19	3.0%	22,800	1
Fuel Oil	289	45.8%	528,432	32
Coal	0	0.0%	0	0
Wood	219	34.7%	390,224	23
Solar	0	0.0%	0	0
Other	28	4.4%	53,312	3

This table displays data from the ACS that estimates current municipal residential heating energy use.

0.0%

100.0%

No Fuel

Total

0

631

1,120,464

0

67

Table 10	C: Current Munic	cipal Commercial En	ergy Use
	Commercial Establishments in Municipality (VT DOL)	Estimated Thermal Energy BTUs per Commercial Establishment (in Billions) (VDPS)	Estimated Thermal Energy BTUs by Commercial Establishments in Municipality (in Billions)
Municipal Commercial Energy Use	21	0.725	15

The table uses data available from the Vermont Department of Labor (VT DOL) and the Vermont Department of Public Service (DPS) to estimate current municipal commercial establishment energy use in the municipality.

Table 1D: Current Electricit	y Use
Use Sector	Current Electricity Use
Residential (kWh)	5,672,275
Commercial and Industrial (kWh)	5,388,038
Total (kWh)	11,060,313

This table displays current electricity use within the municipality. This data is available from Efficiency Vermont (EVT).

Table 1E: Residential Thermal Effi	ciency Tai	gets	
	2025	2035	2050
"Residential - Increased Efficiency and Conservation (% of municipal households to be weatherized)"	5%	16%	78%

This table displays targets for thermal efficiency of residential structures. The data is based on a methodology developed by DPS using data available from the regional Long-range Energy Alternatives Planning (LEAP) analysis and ACS. The data in this table represents the percentage of municipal households that will need to be weatherized in the target years. The target is cumulative.

Table 1F: Commercial Thermal E	fficiency To	arget	
	2025	2035	2050
"Commercial - Increased Efficiency and Conservation (% of commercial establishments to be weatherized)"	25%	25%	73%

This table shows the same information as Table 1E, but sets a target for commercial thermal efficiency and weatherization. Information from the VT DOL is required to complete this target. The target is cumulative.

Table 1G: Thermal Fuel Switching (Residential and Commercial) – Wood Systems

	2025	2035	2050
New Efficient Wood Heat Systems (in units)	0	0	1

This table provides a target for new wood heating systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 1H: Thermal Fuel Switching (Residential and Commercial) – Heat Pumps

	2025	2035	2050
New Heat Pumps (in units)	75	172	322

This table provides a target for new heat pump systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 11: Electricity Efficiency Targets

	2025	2035	2050
Increase Efficiency and Conservation (BTUs)	25.2%	48.3%	100.7%

Data in this table displays a target for increased electricity efficiency and conservation during the target years. This target will be met through conversions to high efficiency appliances, electric heat pumps, and electric light-duty vehicles. These targets were developed using regional LEAP analysis. The target is cumulative.

Table 1J: Use of Renewables - Transportation

	2025	2035	2050
Renewable Energy Use - Transportation (BTUs)	9.3%	30.8%	90.1%

This data displays targets for the percentage of transportation energy use coming from renewable sources during each target year. This target will be met through conversions to electric light-duty vehicles and biodiesel heavy-duty vehicles. This data was developed using the LEAP analysis. The target is cumulative.

Table 1K: Use of Renewables – Heating			
2025 2035 2050			
Renewable Energy Use - Heating (BTUs)	46.0%	59.5%	87.4%

This data displays targets for the percentage of heating energy use coming from renewable sources during each target year. This target will be met through conversions to electric heat pumps and high efficiency wood heating systems. This data was developed using information from the LEAP analysis. The target is cumulative.

Table 1L: Use of Renewables – Electricity			
	2025	2035	2050
Renewable Energy Use - Electricity (MWh)	5,035.4	10,070.9	15,258.9

This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1Q. The target is cumulative.

Table 1M: Trans	nortation Fuel	l Switching	largets -	. Flectric '	Vehicles
Table IIVI. II alis	portation ruc	1 Syvitci iii ig	Targets -	LICCUIC	v Ci iiCiC3

	2025	2035	2050
Electric Vehicles	122	915	2,177

This tables displays a target for switching from fossil fuel based vehicles (gasoline and diesel) to electric vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

Table 1N:	Transportation	Fuel Switching	Targets - Biodiesel
		ullet	

	2025	2035	2050
Biodiesel Vehicles	204	407	784

This tables displays a target for switching from fossil fuel based vehicles to biodiesel-powered vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

Table 10: Existing Renewable Generation			
Renewable Type	MW	MWh	
Solar	0.74	907.54	
Wind	0.03	77.57	
Hydro	0.00	0.00	
Biomass	0.00	0.00	
Other	0.00	0.00	
Total Existing Generation	0.77	985.11	

Table 10 shows existing renewable generation in the municipality, in MW and MWh, based on information available from the Vermont Department of Public Service.

Table 1P: Renewable Generation Potential			
Renewable Type	MW	MWh	
Rooftop Solar	1	903	
Ground-mounted Solar	1,437	1,761,767	
Wind	997	3,056,794	
Hydro	0.064	224	
Biomass and Methane	0	0	
Other	0	0	
Total Renewable Generation Potential	2,434	4,819,689	

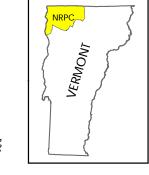
Renewable generation potential is based on mapping completed by the regional planning commission that is based on the Municipal Determination Standards and associated guidance documents developed by DPS. The renewable generation potential is expressed in MW and MWh by the type of renewable resource (solar, wind, hydro, etc.).

Table 10: Renewable Generation Targets

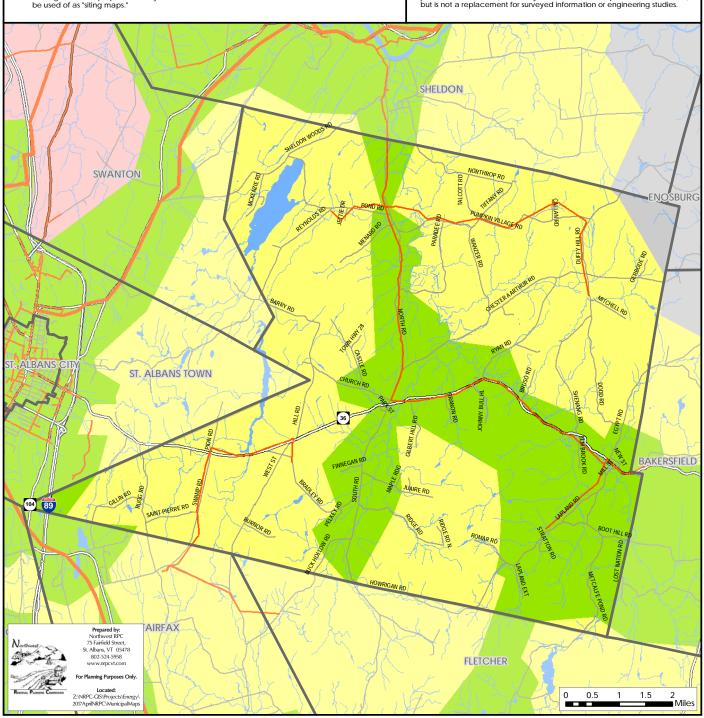
	2025	2035	2050
Total Renewable Generation Target (in MWh)	5,035.44	10,070.87	15,258.90

This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1L.

Table 1R: Sufficient Land?


	Y/N
Solar	Υ
Wind	Υ

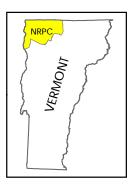
This table shows whether or not there is sufficient land in the municipality to meet the renewable generation targets based on the renewable generation potential in the municipality.


Utility Service Areas

Fairfield, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "sitting maps."

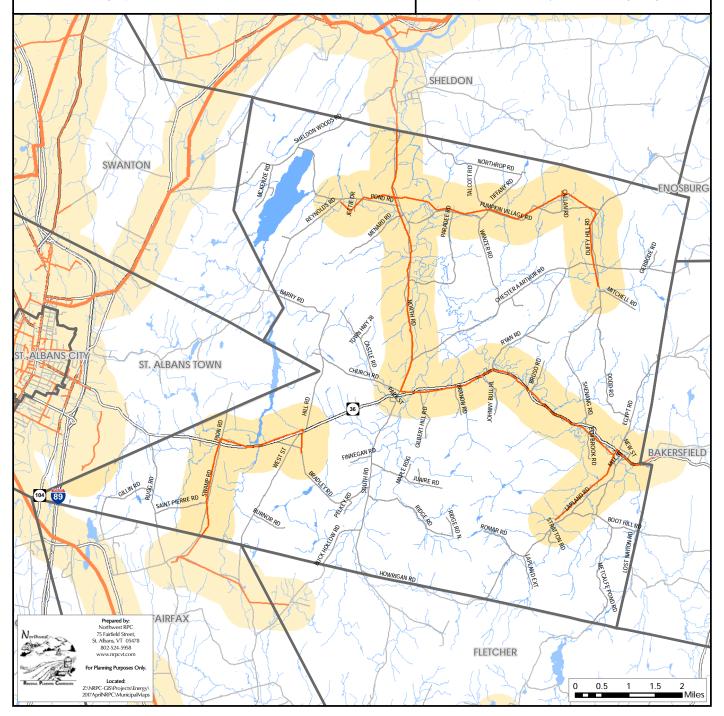
Legend Utility Service Area Features Green Mountain Power Swanton Village Electric Vermont Electric Co-op Enosburg Falls Electric Utility Service Area Features Substation 3 Phase Power Line Transmission Line



Transmission & 3 Phase Power Infrastructure

Fairfield, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

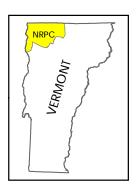

Legend

Substation

3 Phase Power Line

Transmission Line

1/2 Mile Buffer (3 Phase Power Line & Transmission Line)

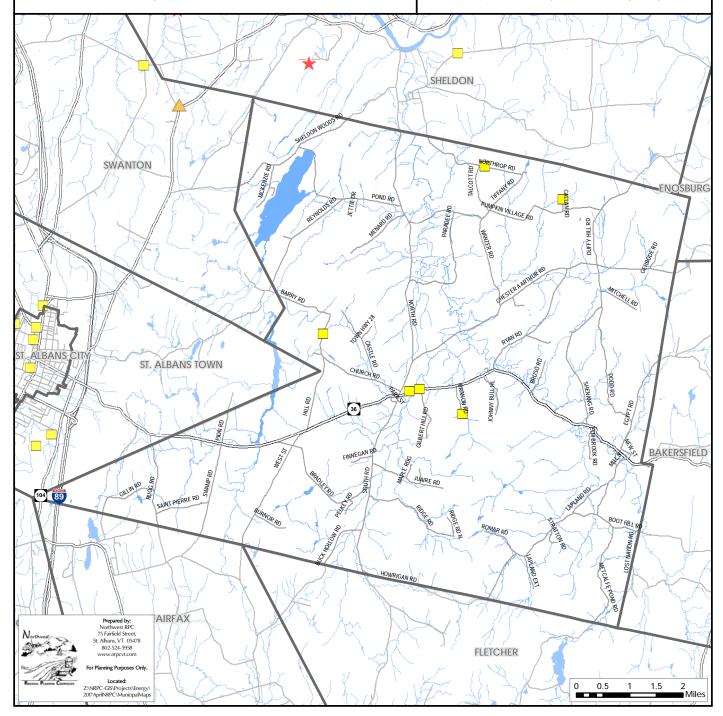


Existing Generation Facilities

Fairfield, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend


Biomass Facility

Hydro Facility

Solar Facility

Note: Only generators 15kW are shown on the map. A full list of all generators is available.

Wind Facility

Hydro

Fairfield, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Sources: VCGI

Substation

3 Phase Power LineTransmission Line

Designated Outstanding Resource Water

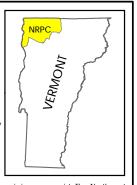
Known Constraint - Designated National Wild & Scenic River

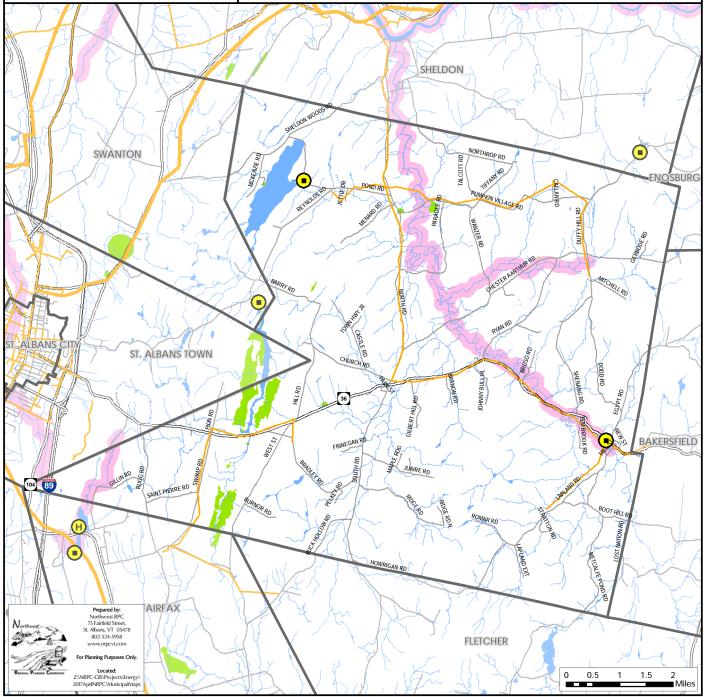
Possible Constraint - RINAs

Possible Constraint -Stressed or Impaired Water Potential Hydroelectric Facility

< 50 kW Capacity

> 50 kW Capacity


High Hazard with < 50 kW Capacity


High Hazard with > 50 kW Capacity

Operating Hydroelectric Facility

Dam not on National Wild and Scenic River

Dam on National Wild and Scenic River

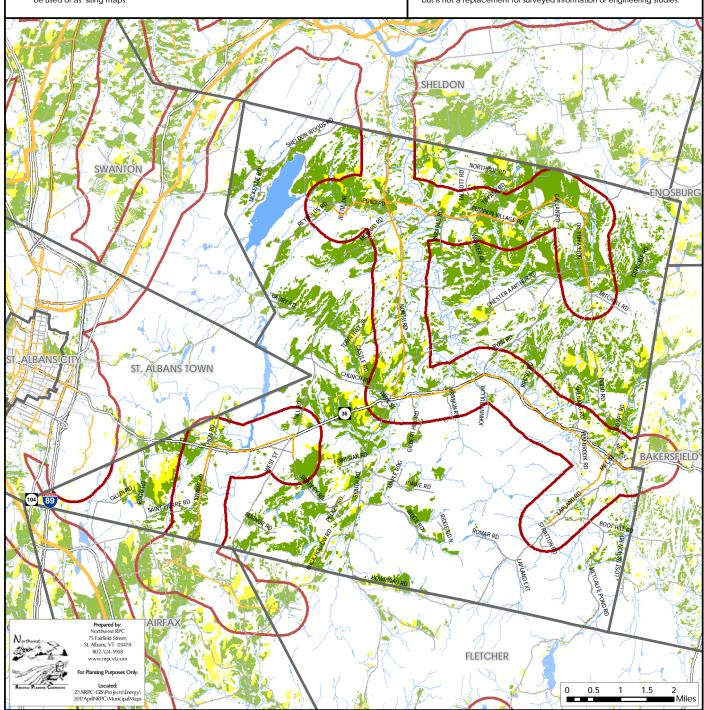
Solar

Fairfield, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Substation

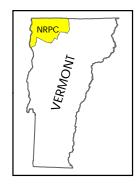

3 Phase Power Line

Transmission Line

1/2 Mile Buffer (3 Phase Power Line & Transmission Line)

Prime Solar/No Known Constraints

Base Solar/Possible Constraints

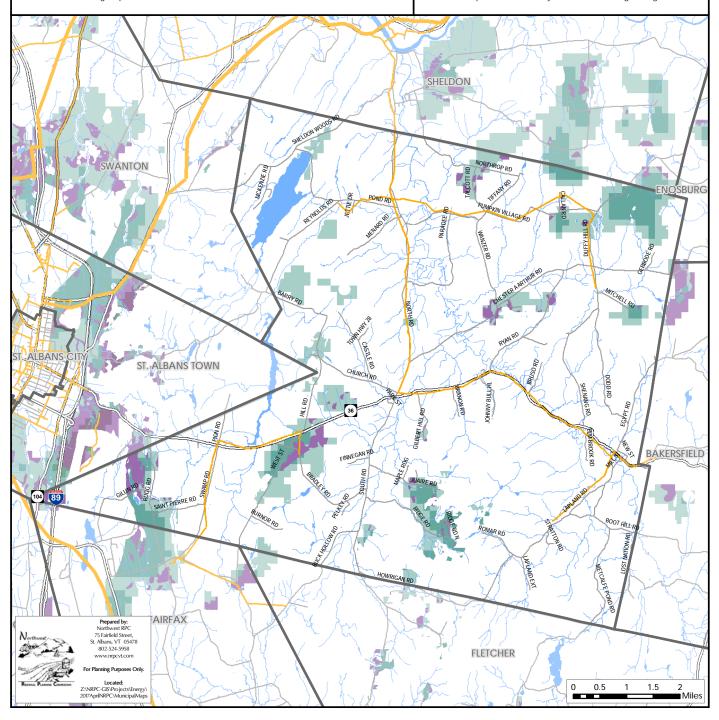


Wind

Fairfield, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend


Substation

3 Phase Power Line

Transmission Line

Prime Wind Areas of high wind potential and no known constraints. Darker areas have higher wind speeds.

Base Wind Areas of high wind potential and a presence of possible constraints.

Woody Biomass

Fairfield, Vermont Act 174 The Energy Development Improvement Act of 2016

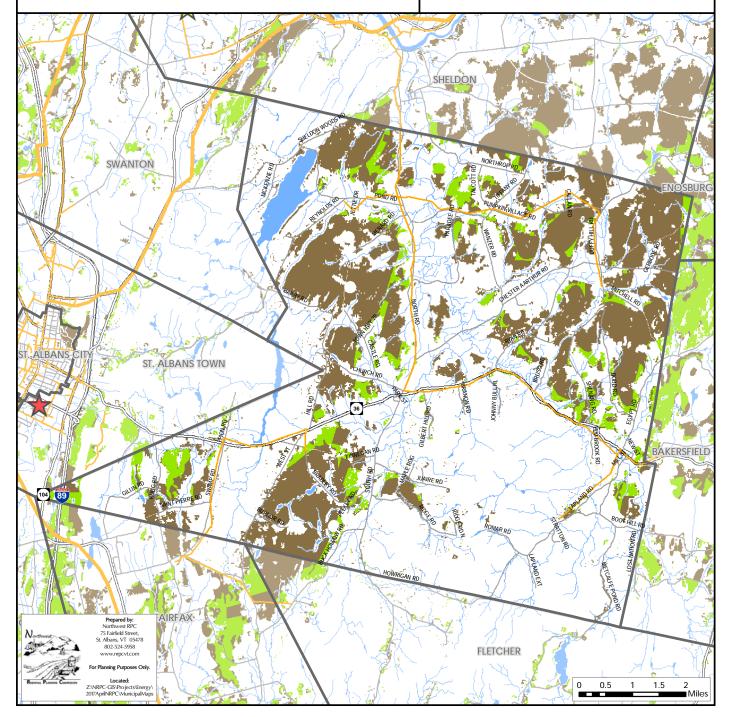
This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Biomass System

Cow Power

Substation


3 Phase Power Line Transmission Line

Prime Woody Biomass/No Known Constraints

Base Woody Biomass/Possible Constraints

		VII Generator	All Generators in Municipality			
Category	Sub - Category	Organization Type	Address	City	CPG Number	Capacity kW
Solar	Ground-mounted PV: Fixed Rack	Residential	1963 Sheldon Woods Road	Fairfield	2948	2
Solar	Ground-mounted PV: Fixed Rack	Residential	645 Pumpkin Village Rd	Fairfield	5242	10.8
Solar	Ground-mounted PV: Fixed Rack	Residential	282 Callan Rd	Fairfield	5140	149.7
Solar	Ground-mounted PV: Fixed Rack	Residential	489 Barry Rd	Fairfield	5162	148.2
Solar	Ground-mounted PV: Fixed Rack	Residential	437 Chester Arthur Road	Fairfield	473	3.1
Solar	Ground-mounted PV: Pole	Residential	604 Hill Rd	Fairfield	2753	8.9
Solar	Ground-mounted PV: Pole	Residential	2528 Dodd Rd	Fairfield	3969	1.5
Solar	Ground-mounted PV: Tracker	Farm	539 Branon Road	Fairfield	2646	100.1
Solar	Ground-mounted PV: Tracker	Residential	1364 Castle Rd	Fairfield	5131	7
Solar	Ground-mounted PV: Tracker	Residential	4695 VT Route 36	Fairfield	2840	34.2
Solar	Ground-mounted PV: Tracker	Residential	1513 Lapland Rd	Fairfield	4270	9
Solar	Ground-mounted PV: Tracker	Residential	1941 Ridge Rd North	Fairfield	1482	9.5
Solar	Ground-mounted PV: Tracker	Residential	280 Beaver Meadow Rd	Fairfield	6437	34.2
Solar	Hot Water	Residential	243 Lost Nation Road	Fairfield		
Solar	Hot Water	Residential	437 Chester Arthur Rd	Fairfield		
Solar	Hot Water	Residential	489 Barry Road	Fairfield		
Solar	Roof-Mounted PV	Residential	91 Fischer Dr	Fairfield	2069	8
Solar	Roof-Mounted PV	Residential	1563 Church Road	Fairfield	3814	7
Solar	Roof-Mounted PV	Residential	2261 Pumpkin Village Rd	Fairfield	6284	3.8
Solar	Roof-Mounted PV	Residential	5132 VT Route 36	Fairfield	2148	7.1
Solar	Roof-Mounted PV	Residential	223 Hiram Hill	Fairfield	3977	7.5
Solar	Roof-Mounted PV	Residential	2757 Pumpkin Village Rd	Fairfield	2235	4.3
Solar	Roof-Mounted PV	Residential	1654 Swamp Road	Fairfield	3824	7
Solar	Roof-Mounted PV	Residential	105 South Rd	Fairfield	2879	6.9
Solar	Roof-Mounted PV	Residential	4552 Rt 36	Fairfield	2853	4
Solar	Roof-Mounted PV	Residential	1685 Rugg Rd	Fairfield	4073	10
Solar	Roof-Mounted PV	Farm	4883 VT Route 36	Fairfield	2839	65.2

		All Generato	All Generators in Municipality			
Category	Sub - Category	Organization Type	Address	City	CPG Number	Capacity kW
Solar	Roof-Mounted PV	Residential	792 Bruso Rd	Fairfield	5314	7
Solar	Roof-Mounted PV	Residential	313 Hiram Rd	Fairfield	5313	9
Solar	Roof-Mounted PV	Residential	1345 Northrop Rd	Fairfield		15
Solar	Roof-Mounted PV	Residential	90 Pion Rd	Fairfield	5192	9
Solar	Roof-Mounted PV	Residential	2 Vt Rt 36	Fairfield		9
Solar	Roof-Mounted PV	Residential	4112 Pond Rd	Fairfield	2867	6.9
Solar	Roof-Mounted PV	Residential	578 Swamp Rd	Fairfield	2054	4.2
Solar	Roof-Mounted PV	Residential	250 Maple Ridge	Fairfield	16-0230	7.6
Solar	Roof-Mounted PV	Residential	4078 Pond Road	Fairfield	7197	9
Solar	Roof-Mounted PV	Residential	444 Pion Road	Fairfield	7290	2
Solar	Roof-Mounted PV	Residential	394 Route 36	Fairfield	7267	9
Solar	Roof-Mounted PV	Residential	47 Gilbert Hill Rd	Fairfield	<i>L</i> 999	10
Solar	Roof-Mounted PV	Residential	6065 Duffy Hill Road	Fairfield	7214	2
Solar	Roof-Mounted PV	Residential	1130 Barry Road	Fairfield		3
Solar	Roof-Mounted PV	Residential	1799 Pond Road	Fairfield	7256	3.1
Wind	Small Wind	Residential	1963 Sheldon Woods Road	Fairfield	460	9.5
Wind	Small Wind	Farm	3971 Pumpkin Village Road	Fairfield	383	6.3
Wind	Small Wind	Residential	336 Emch Drive	Fairfield	445	9.5

Municipal Analysis & Targets - Fletcher

The following is an explanation of the municipal energy data compiled by Northwest Regional Planning Commission (NRPC). The intent of the municipal energy data is to provide the municipalities with data required to ensure compliance with the requirements of Act 174 and "Enhanced Energy Planning" (24 V.S.A. 4352). The following tables contain data that estimates

current energy use and provides targets for future energy use across all sectors (transportation, heating, and electricity). It also sets targets for renewable energy generation within the municipality.

This data is meant to be a starting point for the municipality to begin planning its energy future and to talk about the changes that may need to occur within the municipality to ensure that local, regional and state energy goals are met. This includes the State of Vermont's goal to have 90% of all energy demand be met from renewable sources by 2050.

Figure 1 - Data Sources

ACS - American Community Survey
DOL -Vermont Department of Labor
DPS - Vermont Department of Public Service
EIA - Energy Information Administration
EVT - Efficiency Vermont
LEAP - Long-Range Energy Alternatives Planning
VEIC - Vermont Energy Investment Corporation
VTrans - Vermont Agency of Transportation

Data Sources

Estimates of current energy use consist primarily of data available from the American Community Survey (ACS), the Vermont Agency of Transportation (VTrans), the Vermont Department of Labor (DOL), and the Vermont Department of Public Service (DPS). Targets for future energy use are reliant upon the Long-range Energy Alternatives Planning (LEAP) analysis for the region completed the Vermont Energy Investment Corporation (VEIC). Targets for future energy generation have come from the regional planning commission and DPS. For more information on LEAP, see the Northwest Regional Energy Plan (www.nrpcvt.com). Targets for both future energy use and energy generation have been generally developed using a "top down" method of disaggregating regional data to the municipal level.

It is possible to develop "bottom up" data. For those municipalities interested in that approach, please see the Department of Public Service's Analysis and Targets Guidance (http://publicservice.vermont.gov/content/act-174-recommendations-and-determination-standards).

Please remember that the targets established by LEAP represent only one way to achieve energy goals. There may several other similar pathways that a municipality may choose to take in order to meet the 90x50 goal.

Below is a worksheet by worksheet explanation of the Municipal Template spreadsheet:

1. Municipal Data Summary

The following tables summarize all data that is required to be in a municipal plan if the plan is to meet the "determination" standards established by the Vermont Department of Public Service.

Table 1A: Current Municipal Transportation Energy Use				
Transportation Data	Municipal Data			
Total # of Passenger Vehicles (ACS 2011-2015)	1,216			
Average Miles per Vehicle (Vtrans)	11,356			
Total Miles Traveled	13,808,896			
Realized MPG (2013 - VTrans 2015 Energy Profile)	18.6			
Total Gallons Use per Year	742,414			
Transportation BTUs (Billion)	89			
Average Cost per Gallon of Gasoline (RPC)	2.31			
Gasoline Cost per Year	1,714,976			

This table uses data from the American Community Survey (ACS) and Vermont Agency of Transportation (VTrans) to calculate current transportation energy use and energy costs in the municipality.

Tal	ble 1B: Current M	unicipal Residen	itial Heating Energy	Use
Fuel Source	Municipal Households (ACS 2011-2015)	% of Municipal Households	Municipal Square Footage Heated	Municipal BTU (in Billions)
Natural Gas	0	0.0%	0	0
Propane	85	16.3%	155,504	9
Electricity	8	1.5%	15,232	1
Fuel Oil	195	37.5%	367,056	22
Coal	0	0.0%	0	0
Wood	226	43.5%	422,560	25
Solar	0	0.0%	0	0
Other	6	1.2%	11,424	1
No Fuel	0	0.0%	0	0
Total	520	100.0%	971,776	58

This table displays data from the ACS that estimates current municipal residential heating energy use.

Table 10	Table 1C: Current Municipal Commercial Energy Use							
	Commercial Establishments in Municipality (VT DOL)	Estimated Thermal Energy BTUs per Commercial Establishment (in Billions) (VDPS)	Estimated Thermal Energy BTUs by Commercial Establishments in Municipality (in Billions)					
Municipal Commercial Energy Use	5	0.725	4					

The table uses data available from the Vermont Department of Labor (VT DOL) and the Vermont Department of Public Service (DPS) to estimate current municipal commercial establishment energy use in the municipality.

Table 1D: Current Electricity Use				
Use Sector	Current Electricity Use			
Residential (kWh)	4,674,458			
Commercial and Industrial (kWh)	1,282,866			
Total (kWh)	5,957,324			

This table displays current electricity use within the municipality. This data is available from Efficiency Vermont (EVT).

Table 1E: Residential Thermal Efficiency Targets					
	2025	2035	2050		
"Residential - Increased Efficiency and Conservation (% of municipal households to be weatherized)"	5%	16%	78%		

This table displays targets for thermal efficiency of residential structures. The data is based on a methodology developed by DPS using data available from the regional Long-range Energy Alternatives Planning (LEAP) analysis and ACS. The data in this table represents the percentage of municipal households that will need to be weatherized in the target years. The target is cumulative.

Table 1F: Commercial Thermal Efficiency Target						
	2025	2035	2050			
"Commercial - Increased Efficiency and Conservation (% of commercial establishments to be weatherized)"	25%	25%	73%			

This table shows the same information as Table 1E, but sets a target for commercial thermal efficiency and weatherization. Information from the VT DOL is required to complete this target. The target is cumulative.

Table 1G: Thermal Fuel Switching (Residential and Commercial) – Wood Systems

	2025	2035	2050
New Efficient Wood Heat Systems (in units)	0	0	-1

This table provides a target for new wood heating systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 1H: Thermal Fuel Switching (Residential and Commercial) – Heat Pumps

	2025	2035	2050
New Heat Pumps (in units)	62	142	265

This table provides a target for new heat pump systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 11: Electricity Efficiency Targets

	2025	2035	2050
Increase Efficiency and Conservation (BTUs)	25.2%	48.3%	100.7%

Data in this table displays a target for increased electricity efficiency and conservation during the target years. This target will be met through conversions to high efficiency appliances, electric heat pumps, and electric light-duty vehicles. These targets were developed using regional LEAP analysis. The target is cumulative.

Table 1J: Use of Renewables - Transportation

	2025	2035	2050
Renewable Energy Use - Transportation (BTUs)	4.5%	21.9%	85.9%

This data displays targets for the percentage of transportation energy use coming from renewable sources during each target year. This target will be met through conversions to electric light-duty vehicles and biodiesel heavy-duty vehicles. This data was developed using the LEAP analysis. The target is cumulative.

Table 1K: Use of Renewables - Heating			
	2025	2035	2050
Renewable Energy Use - Heating (BTUs)	47.3%	61.2%	89.2%

This data displays targets for the percentage of heating energy use coming from renewable sources during each target year. This target will be met through conversions to electric heat pumps and high efficiency wood heating systems. This data was developed using information from the LEAP analysis. The target is cumulative.

Table 1L: Use of Renewables - Electricity			
	2025	2035	2050
Renewable Energy Use - Electricity (MWh)	4,008.6	8,017.1	12,147.2

This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1Q. The target is cumulative.

Table 1M: Transportation Fuel Switching Targets – Electric Vehicles				
	2025	2035	2050	

106

This tables displays a target for switching from fossil fuel based vehicles (gasoline and diesel) to electric vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

Electric Vehicles

Table 1N: Transportation Fuel Switching Targets – Biodiesel				
	2025	2035	2050	
Biodiesel Vehicles	58	113	211	

This tables displays a target for switching from fossil fuel based vehicles to biodiesel-powered vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

797

1,895

Table 10: Existing Renewable Generation				
Renewable Type	MW	MWh		
Solar	0.11	134.90		
Wind	0.00	0.00		
Hydro	0.00	0.00		
Biomass	0.00	0.00		
Other	0.00	0.00		
Total Existing Generation	0.11	134.90		

Table 10 shows existing renewable generation in the municipality, in MW and MWh, based on information available from the Vermont Department of Public Service.

Table 1P: Renewable Generation Potential				
Renewable Type	MW	MWh		
Rooftop Solar	1	668		
Ground-mounted Solar	320	392,168		
Wind	69	211,937		
Hydro	0	0		
Biomass and Methane	0	0		
Other	0	0		
Total Renewable Generation Potential	389	604,773		

Renewable generation potential is based on mapping completed by the regional planning commission that is based on the Municipal Determination Standards and associated guidance documents developed by DPS. The renewable generation potential is expressed in MW and MWh by the type of renewable resource (solar, wind, hydro, etc.).

Table 10: Renewable Generation Targets

	2025	2035	2050
Total Renewable Generation Target (in MWh)	4,008.57	8,017.13	12,147.17

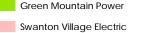
This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1L.

Table 1R: Sufficient Land?

	Y/N
Solar	Υ
Wind	Υ

This table shows whether or not there is sufficient land in the municipality to meet the renewable generation targets based on the renewable generation potential in the municipality.

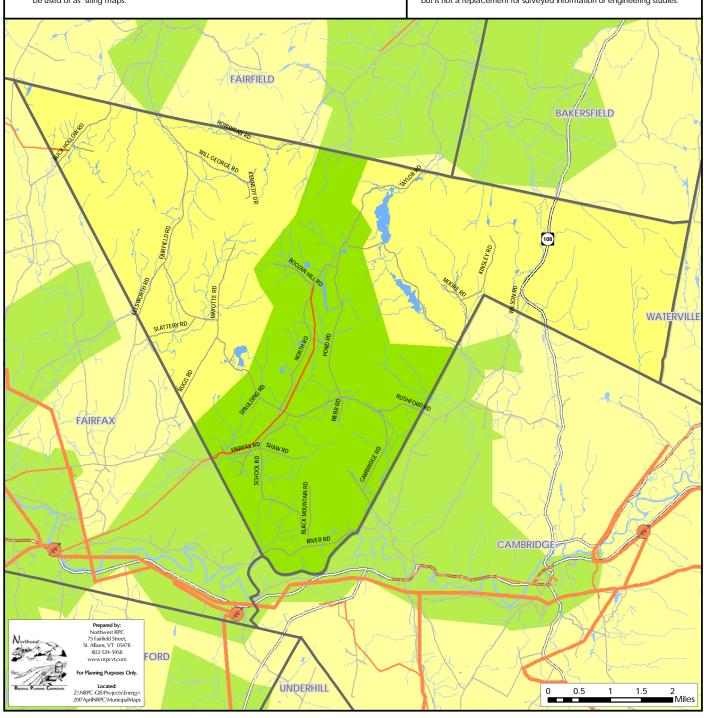
Utility Service Areas


Fletcher, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Utility Service Area Features



Vermont Electric Co-op

3 Phase Power Line Transmission Line

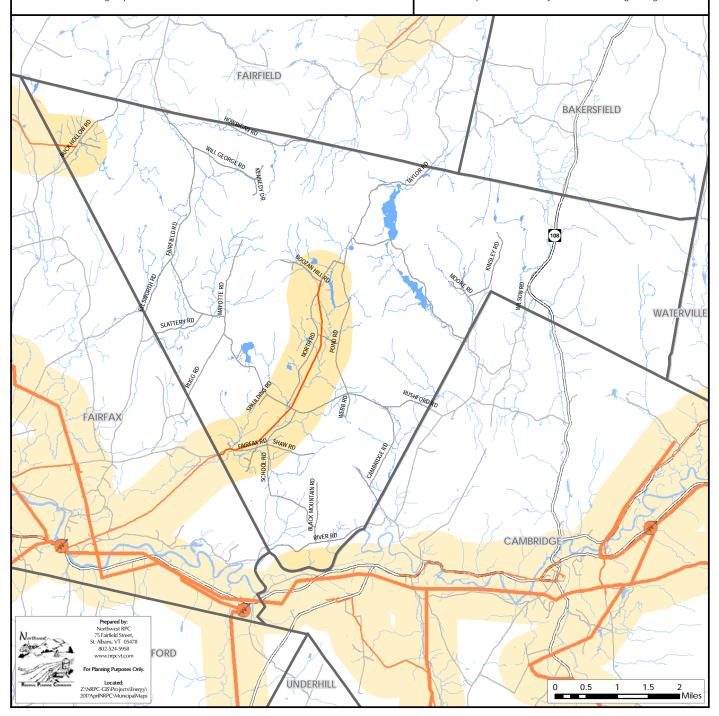
Substation

Enosburg Falls Electric

Transmission & 3 Phase **Power Infrastructure**

Fletcher, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "sitting maps."


Legend

Substation

3 Phase Power Line

Transmission Line

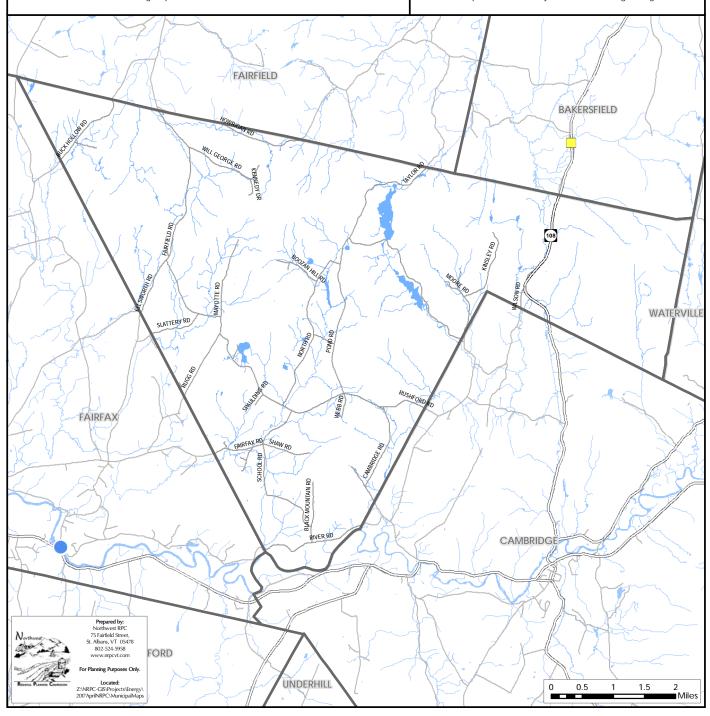
1/2 Mile Buffer (3 Phase Power Line & Transmission Line)

Existing Generation Facilities

Fletcher, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend


Biomass Facility

Hydro Facility

Solar Facility

Note: Only generators 15kW are shown on the map. A full list of all generators is available.

Wind Facility

Hydro

Fletcher, Vermont **Act 174** The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipallities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as 'stiting maps." be used of as "siting maps."

Legend

Substation

3 Phase Power Line Transmission Line

> Designated Outstanding Resource Water

Possible Constraint -

Known Constraint - Designated National Wild & Scenic River

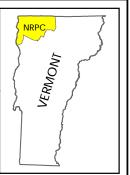
Stressed or Impaired Water

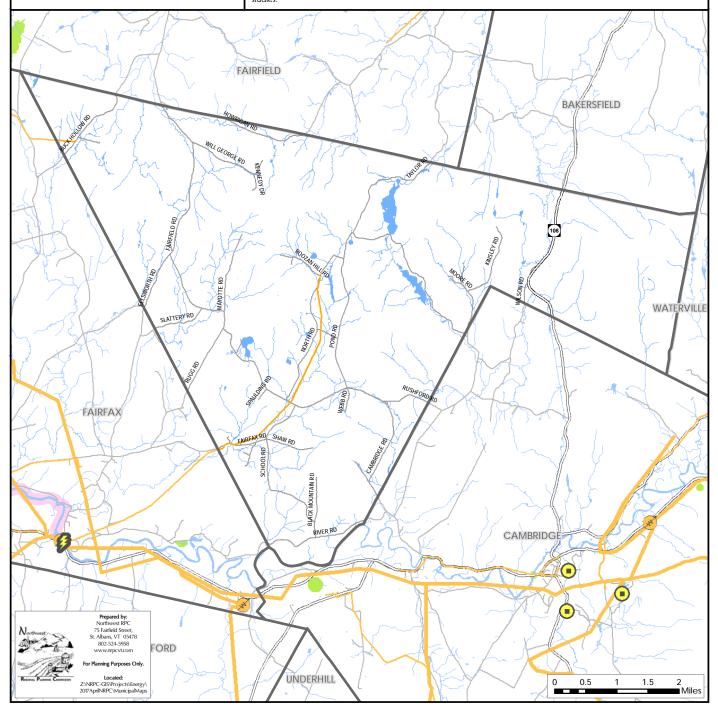
Possible Constraint - RINAs

Potential Hydroelectric Facility

< 50 kW Capacity

> 50 kW Capacity


H)


High Hazard with < 50 kW Capacity High Hazard with > 50 kW Capacity

Operating Hydroelectric Facility

Dam not on National Wild and Scenic River

Dam on National Wild and Scenic River

Legend Solar Substation NRPC Fletcher, Vermont 3 Phase Power Line Act 174 Transmission Line 1/2 Mile Buffer (3 Phase Power Line & Transmission Line) The Energy Development Prime Solar/No Known Constraints Improvement Act of 2016 Base Solar/Possible Constraints This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "sitting maps." Sources: VCGI Disclaimer: The accuracy of information presented is determined by its sources. Errors and omissions may exist. The Northwest RPC is not responsible for these. Questions of on-the-ground location can be resolved by site inspections and/or surveys by a registered surveyor. This map is not sufficient for delineation of features on-the-ground. This map identifies the presence of features, and may indicate relationships between features, but is not a replacement for surveyed information or engineering studies. FAIRFIELD BAKERSFIELD WATERVILLE FORD Located: Z:\NRPC-GIS\Pro jects\Energy\ 2017AprilNRPC\MunicipalMaps UNDERHILL

Wind Legend Substation NRPC, Fletcher, Vermont 3 Phase Power Line Transmission Line Act 174 Prime Wind Base Wind The Energy Development Areas of high wind potential and no Areas of high wind potential and a presence Improvement Act of 2016 known constraints. of possible constraints. Darker areas have higher wind speeds. Darker areas have higher wind speeds. This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot investigation. Sources: VCGI Disclaimer: The accuracy of information presented is determined by its sources. Errors and omissions may exist. The Northwest RPC is not responsible for these. Questions of on-the-ground location can be resolved by site inspections and/or surveys by a registered surveyor. This map is not sufficient for delineation of features on-the-ground. This map identifies the presence of features, and may indicate relationships between features, but is not a replacement for surveyed information or engineering studies. investigation for a proposed facility and cannot be used of as "siting maps." FAIRFIELD BAKERSFIELD WATERVILLE SLATTERYRD FAIRFAX CAMBRIDG э гагпекі Street, Albans, VT 05478 802-524-5958

UNDERHILL

Miles

For Planning Purposes Only.

Located:

Z:\NRPC-GIS\Projects\Energy'
2017April\nRPC\MunicipalMap

FORD

Woody Biomass

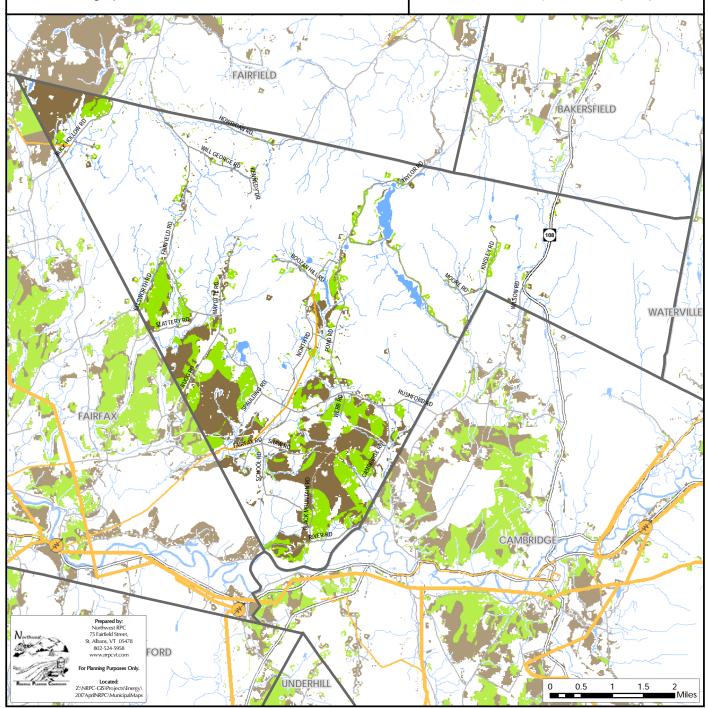
Fletcher, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipallities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Biomass System

Cow Power


3 Phase Power Line

Transmission Line Prime Woody Biomass/No Known Constraints

Base Woody Biomass/Possible Constraints

	All	All Generators in Municipality	Municipality			
Category	Sub - Category	Organization Type	Address	City	CPG Number	Capacity kW
Solar	Ground-mounted PV: Fixed Rack	Residential	246 Drinkwine Road	Fletcher	7005	7.6
Solar	Ground-mounted PV: Pole	Residential	567 Rugg Rd	Fletcher	5502	10.8
Solar	Ground-mounted PV: Pole	Residential	706 School Rd	Fletcher	3461	8.9
Solar	Ground-mounted PV: Pole	Residential	1199 Taylor Road	Fletcher	7275	7.6
Solar	Ground-mounted PV: Tracker	Residential	658 Ellsworth Rd	Fletcher	3828	6.4
Solar	Ground-mounted PV: Tracker	Residential	221 Black Mountain Rd	Fletcher	3884	6
Solar	Roof-Mounted PV	Farm	2150 Buck Hollow Rd	Fletcher	549	11.9
Solar	Roof-Mounted PV	Residential	17 Rushford Rd	Fletcher	4018	2
Solar	Roof-Mounted PV	Residential	495 Lloyd Road	Fletcher	3310	2.9
Solar	Roof-Mounted PV	Residential	81 Oak Hill Rd	Fletcher	3422	5.1
Solar	Roof-Mounted PV	Residential	1078 River Rd	Fletcher	1881	3.6
Solar	Roof-Mounted PV	Residential	271 Wright Rd	Fletcher	3161	3.1
Solar	Roof-Mounted PV	Residential	819 Fairfax Road	Fletcher	16-0231	3.8
Solar	Roof-Mounted PV	Residential	168 Stone Lane	Fletcher	7353	3.6
Solar	Roof-Mounted PV	Residential	172 Oustinoff Road	Fletcher	7199	3.8
Solar	Roof-Mounted PV	Residential	523 Shaw Road	Fletcher		9
Solar	Roof-Mounted PV	Residential	160 Whitetail Way	Fletcher	7270	7.6
Solar	Roof-Mounted PV	Residential	78 Oustinoff Road	Fletcher	16-0818	3.6
Solar	Roof-Mounted PV	Residential	2895 Pond Road	Fletcher	7269	4
Solar	Roof-Mounted PV	Residential	50 Mountain View Dr	Fletcher		2
Solar	Roof-Mounted PV	Residential	1541 Fairfax Road	Fletcher	16-1487	3

Municipal Analysis & Targets - Franklin

The following is an explanation of the municipal energy data compiled by Northwest Regional Planning Commission (NRPC). The intent of the municipal energy data is to provide the municipalities with data required to ensure compliance with the requirements of Act 174 and "Enhanced Energy Planning" (24 V.S.A. 4352). The following tables contain data that estimates

current energy use and provides targets for future energy use across all sectors (transportation, heating, and electricity). It also sets targets for renewable energy generation within the municipality.

This data is meant to be a starting point for the municipality to begin planning its energy future and to talk about the changes that may need to occur within the municipality to ensure that local, regional and state energy goals are met. This includes the State of Vermont's goal to have 90% of all energy demand be met from renewable sources by 2050.

Figure 1 - Data Sources

ACS - American Community Survey
DOL -Vermont Department of Labor
DPS - Vermont Department of Public Service
EIA - Energy Information Administration
EVT - Efficiency Vermont
LEAP - Long-Range Energy Alternatives Planning
VEIC - Vermont Energy Investment Corporation
VTrans - Vermont Agency of Transportation

Data Sources

Estimates of current energy use consist primarily of data available from the American Community Survey (ACS), the Vermont Agency of Transportation (VTrans), the Vermont Department of Labor (DOL), and the Vermont Department of Public Service (DPS). Targets for future energy use are reliant upon the Long-range Energy Alternatives Planning (LEAP) analysis for the region completed the Vermont Energy Investment Corporation (VEIC). Targets for future energy generation have come from the regional planning commission and DPS. For more information on LEAP, see the Northwest Regional Energy Plan (www.nrpcvt.com). Targets for both future energy use and energy generation have been generally developed using a "top down" method of disaggregating regional data to the municipal level.

It is possible to develop "bottom up" data. For those municipalities interested in that approach, please see the Department of Public Service's Analysis and Targets Guidance (http://publicservice.vermont.gov/content/act-174-recommendations-and-determination-standards).

Please remember that the targets established by LEAP represent only one way to achieve energy goals. There may several other similar pathways that a municipality may choose to take in order to meet the 90x50 goal.

Below is a worksheet by worksheet explanation of the Municipal Template spreadsheet:

1. Municipal Data Summary

The following tables summarize all data that is required to be in a municipal plan if the plan is to meet the "determination" standards established by the Vermont Department of Public Service.

Table 1A: Current Municipal Transportation Energy Use			
Transportation Data	Municipal Data		
Total # of Passenger Vehicles (ACS 2011-2015)	1,118		
Average Miles per Vehicle (Vtrans)	11,356		
Total Miles Traveled	12,696,008		
Realized MPG (2013 - VTrans 2015 Energy Profile)	18.6		
Total Gallons Use per Year	682,581		
Transportation BTUs (Billion)	82		
Average Cost per Gallon of Gasoline (RPC)	2.31		
Gasoline Cost per Year	1,576,762		

This table uses data from the American Community Survey (ACS) and Vermont Agency of Transportation (VTrans) to calculate current transportation energy use and energy costs in the municipality.

Tal	Table 1B: Current Municipal Residential Heating Energy Use					
Fuel Source	Municipal Households (ACS 2011-2015)	% of Municipal Households	Municipal Square Footage Heated	Municipal BTU (in Billions)		
Natural Gas	0	0.0%	0	0		
Propane	37	6.7%	65,520	4		
Electricity	9	1.6%	12,912	1		
Fuel Oil	346	62.3%	617,952	37		
Coal	0	0.0%	0	0		
Wood	147	26.5%	278,480	17		
Solar	0	0.0%	0	0		
Other	16	2.9%	30,464	2		
No Fuel	0	0.0%	0	0		
Total	555	100.0%	1,005,328	60		

This table displays data from the ACS that estimates current municipal residential heating energy use.

Table 10	Table 1C: Current Municipal Commercial Energy Use				
	Commercial Establishments in Municipality (VT DOL)	Estimated Thermal Energy BTUs per Commercial Establishment (in Billions) (VDPS)	Estimated Thermal Energy BTUs by Commercial Establishments in Municipality (in Billions)		
Municipal Commercial Energy Use	15	0.725	11		

The table uses data available from the Vermont Department of Labor (VT DOL) and the Vermont Department of Public Service (DPS) to estimate current municipal commercial establishment energy use in the municipality.

Table 1D: Current Electricity Use				
Use Sector	Current Electricity Use			
Residential (kWh)	4,989,085			
Commercial and Industrial (kWh)	3,848,599			
Total (kWh)	8,837,683			

This table displays current electricity use within the municipality. This data is available from Efficiency Vermont (EVT).

Table 1E: Residential Thermal Efficiency Targets				
	2025	2035	2050	
"Residential - Increased Efficiency and Conservation (% of municipal households to be weatherized)"	5%	16%	78%	

This table displays targets for thermal efficiency of residential structures. The data is based on a methodology developed by DPS using data available from the regional Long-range Energy Alternatives Planning (LEAP) analysis and ACS. The data in this table represents the percentage of municipal households that will need to be weatherized in the target years. The target is cumulative.

Table 1F: Commercial Thermal Efficiency Target				
	2025	2035	2050	
"Commercial - Increased Efficiency and Conservation (% of commercial establishments to be weatherized)"	25%	25%	73%	

This table shows the same information as Table 1E, but sets a target for commercial thermal efficiency and weatherization. Information from the VT DOL is required to complete this target. The target is cumulative.

Table 1G: Thermal Fuel Switching (Residential and Commercial) – Wood Systems

	2025	2035	2050
New Efficient Wood Heat Systems (in units)	0	0	0

This table provides a target for new wood heating systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 1H: Thermal Fuel Switching (Residential and Commercial) – Heat Pumps

	2025	2035	2050
New Heat Pumps (in units)	66	152	283

This table provides a target for new heat pump systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 11: Electricity Efficiency Targets

	2025	2035	2050
Increase Efficiency and Conservation (BTUs)	25.2%	48.3%	100.7%

Data in this table displays a target for increased electricity efficiency and conservation during the target years. This target will be met through conversions to high efficiency appliances, electric heat pumps, and electric light-duty vehicles. These targets were developed using regional LEAP analysis. The target is cumulative.

Table 1J: Use of Renewables - Transportation

	2025	2035	2050
Renewable Energy Use - Transportation (BTUs)	7.8%	28.2%	89.1%

This data displays targets for the percentage of transportation energy use coming from renewable sources during each target year. This target will be met through conversions to electric light-duty vehicles and biodiesel heavy-duty vehicles. This data was developed using the LEAP analysis. The target is cumulative.

Table 1K: Use of Renewables - Heating			
	2025	2035	2050
Renewable Energy Use - Heating (BTUs)	46.3%	59.9%	87.9%

This data displays targets for the percentage of heating energy use coming from renewable sources during each target year. This target will be met through conversions to electric heat pumps and high efficiency wood heating systems. This data was developed using information from the LEAP analysis. The target is cumulative.

Table 1L: Use of Renewables - Electricity			
	2025	2035	2050
Renewable Energy Use - Electricity (MWh)	6,507.4	13,014.8	19,719.4

This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1Q. The target is cumulative.

Table 1M: Transportation Fuel Switching Targets - Electric Vehicles

	2025	2035	2050
Electric Vehicles	98	733	1,743

This tables displays a target for switching from fossil fuel based vehicles (gasoline and diesel) to electric vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

Tabla 1N.	Transpartation	. Fual Cudtables	y Tarasta Diadiasal
TADIE IN:	папѕоопапоп	i fuel Swiiching	g Targets – Biodiesel
Table III	Trainsportation		jiaigets Bleateset

	2025	2035	2050
Biodiesel Vehicles	125	247	474

This tables displays a target for switching from fossil fuel based vehicles to biodiesel-powered vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

Table 10: Existing Renewable Generation				
Renewable Type	MW	MWh		
Solar	0.20	245.28		
Wind	0.00	7.67		
Hydro	0.00	0.00		
Biomass	0.18	736.37		
Other	0.00	0.00		
Total Existing Generation	0.38	989.31		

Table 10 shows existing renewable generation in the municipality, in MW and MWh, based on information available from the Vermont Department of Public Service.

Table 1P: Renewable Generation Potential				
Renewable Type	MW	MWh		
Rooftop Solar	1	773		
Ground-mounted Solar	821	1,006,421		
Wind	117	359,358		
Hydro	0.023	81		
Biomass and Methane	0	0		
Other	0	0		
Total Renewable Generation Potential	938	1,366,632		

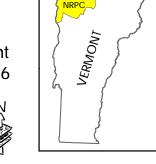
Renewable generation potential is based on mapping completed by the regional planning commission that is based on the Municipal Determination Standards and associated guidance documents developed by DPS. The renewable generation potential is expressed in MW and MWh by the type of renewable resource (solar, wind, hydro, etc.).

Table 10: Renewable Generation Targets

	2025	2035	2050
Total Renewable Generation Target (in MWh)	6,507.40	13,014.79	19,719.39

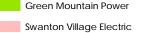
This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1L.

Table 1R: Sufficient Land?


	Y/N
Solar	Υ
Wind	Υ

This table shows whether or not there is sufficient land in the municipality to meet the renewable generation targets based on the renewable generation potential in the municipality.

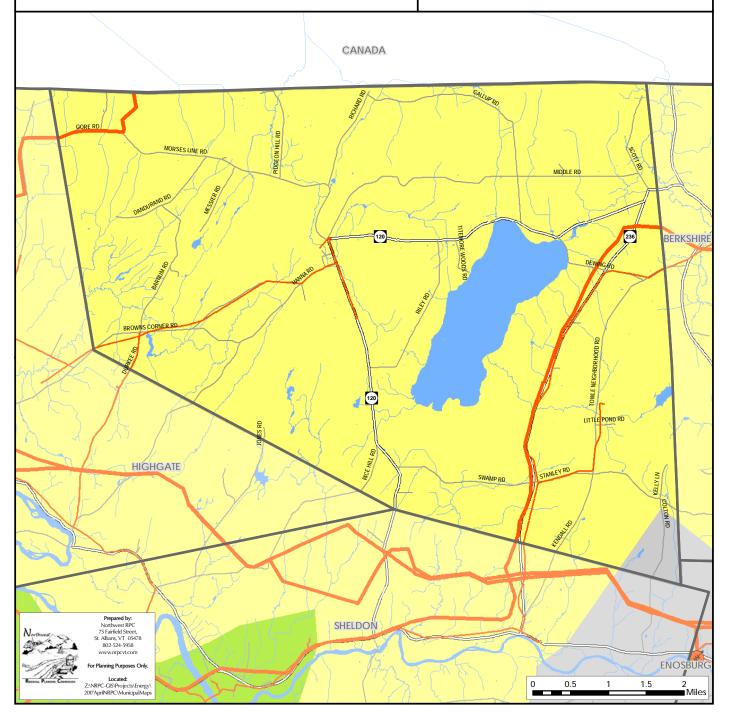
Utility Service Areas


Franklin, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Utility Service Area Features



Vermont Electric Co-op

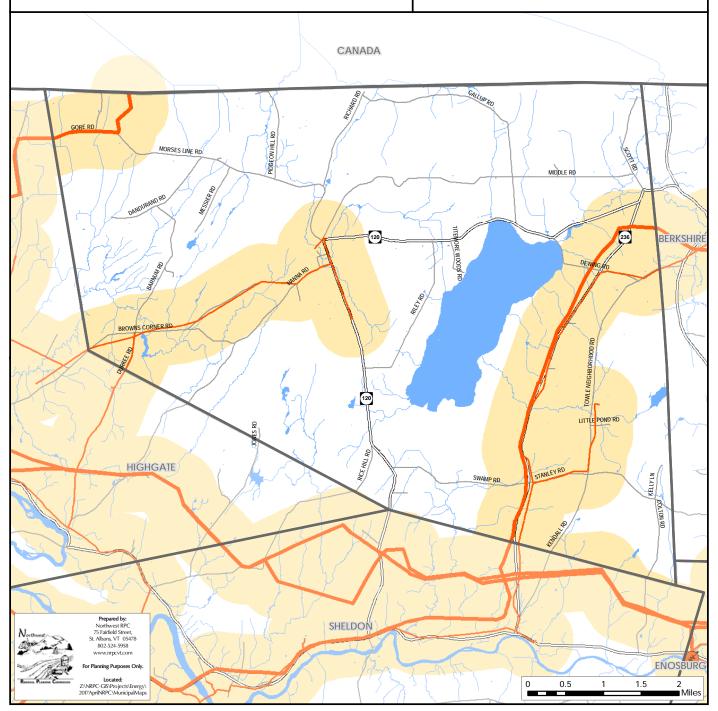
Transmission Line

Enosburg Falls Electric

Transmission & 3 Phase **Power Infrastructure**

Franklin, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "sitting maps."

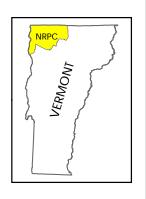

Legend

Substation

3 Phase Power Line

Transmission Line

1/2 Mile Buffer (3 Phase Power Line & Transmission Line)

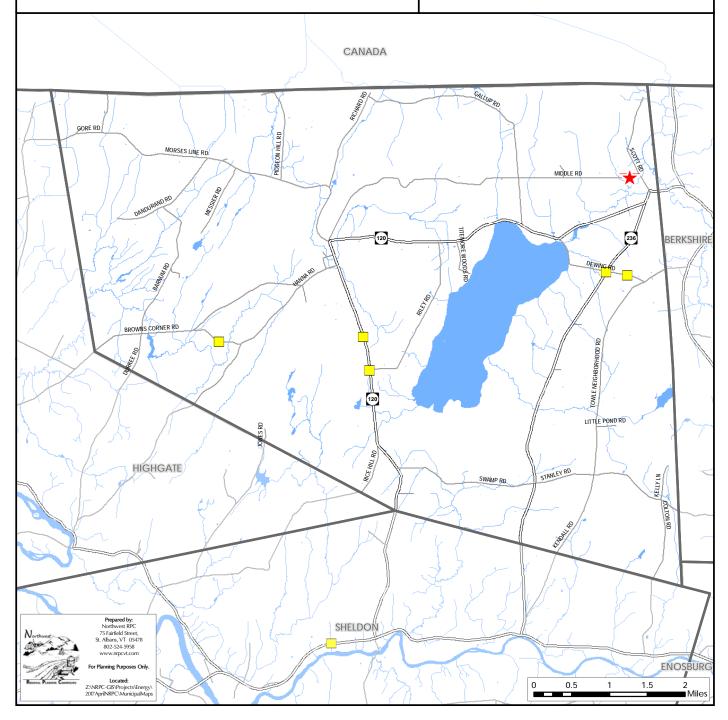


Existing Generation Facilities

Franklin, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend


Biomass Facility

Hydro Facility

Solar Facility

Note: Only generators 15kW are shown on the map. A full list of all generators is available.

Wind Facility

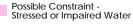
Hydro

Franklin, Vermont Act 174 The Energy Development Improvement Act of 2016

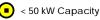
This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

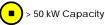
Legend

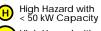
Substation



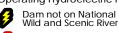
3 Phase Power Line

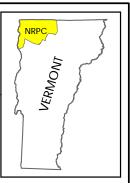


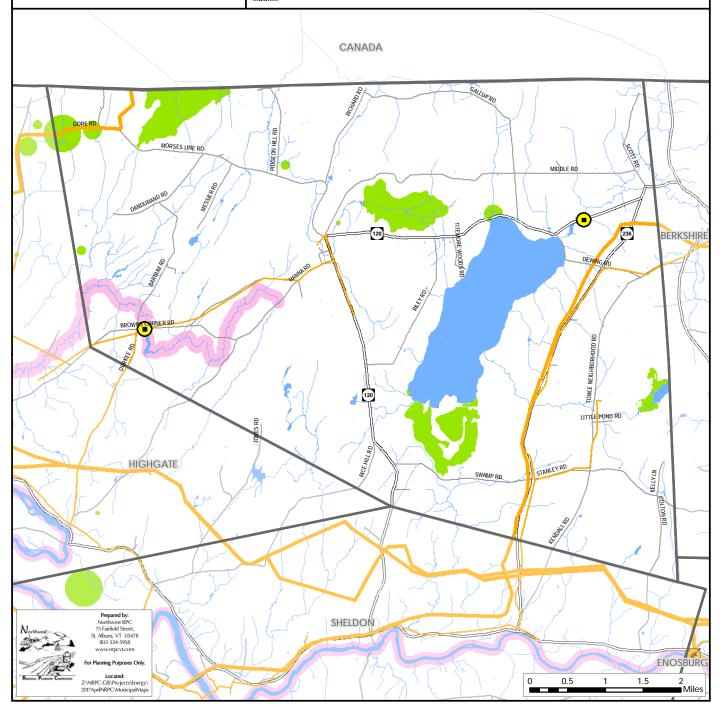




Possible Constraint - RINAs


Potential Hydroelectric Facility





High Hazard with > 50 kW Capacity Operating Hydroelectric Facility

Dam on National Wild and Scenic River

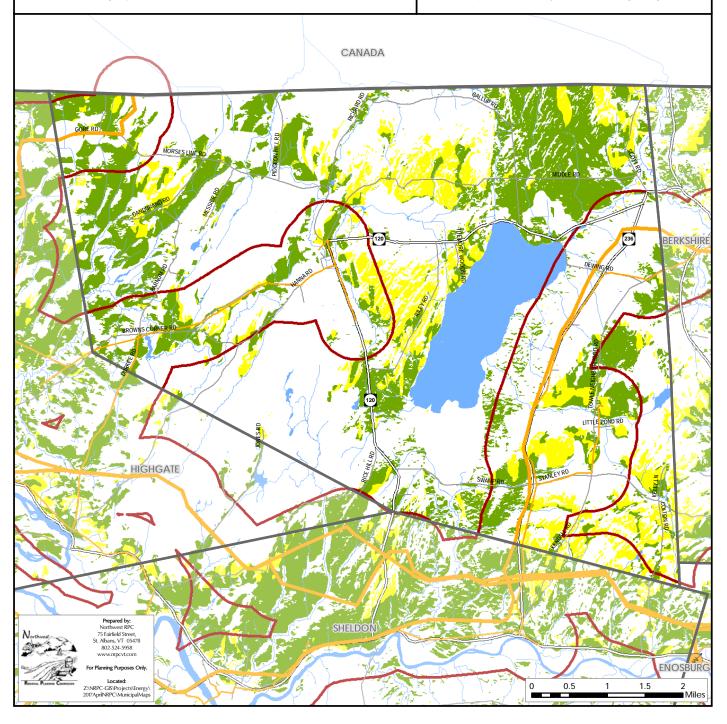
Solar

Franklin, Vermont Act 174 The Energy Development

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Substation


3 Phase Power Line

Transmission Line

1/2 Mile Buffer (3 Phase Power Line & Transmission Line)

Prime Solar/No Known Constraints

Base Solar/Possible Constraints

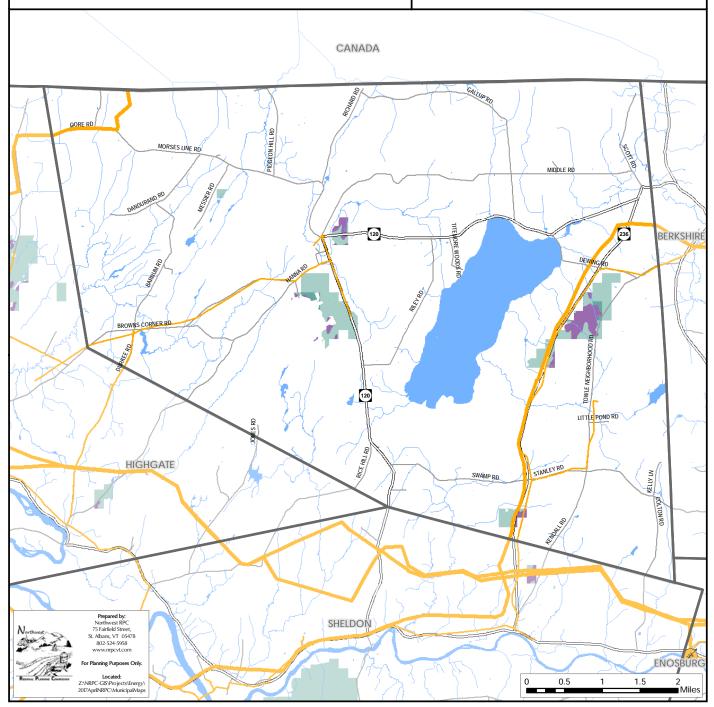
Wind

Franklin, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipallities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Substation


3 Phase Power Line

Transmission Line Prime Wind

Areas of high wind potential and no known constraints. Darker areas have higher wind speeds.

Base Wind Areas of high wind potential and a presence of possible constraints.

Darker areas have higher wind speeds.

Woody Biomass

Franklin, Vermont Act 174 The Energy Development Improvement Act of 2016

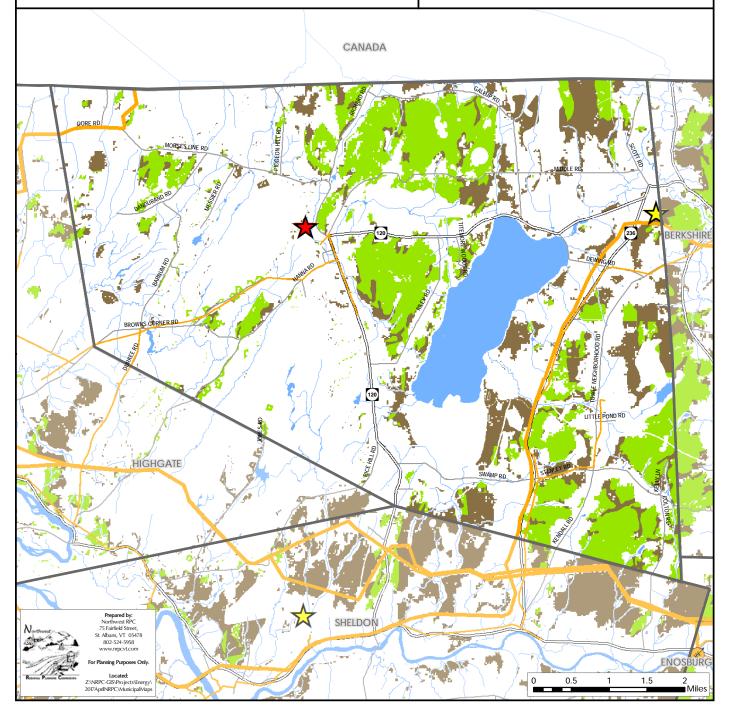
This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "sitting maps."

Legend

Biomass System

Cow Power

Substation


3 Phase Power Line

Prime Woody Biomass/No Known Constraints

Base Woody Biomass/Possible Constraints

	A	VII Generator	All Generators in Municipality			
Category	Sub - Category	Organization Type	Address	City	CPG Number	Capacity kW
Biomass	Anaerobic Digester	Farm	4654 Middle Road	Franklin		180
Solar	Ground-mounted PV: Fixed Rack	Residential	4120 Middle Road	Franklin	4253	14.2
Solar	Ground-mounted PV: Fixed Rack	Residential	1651 Dewing Road	Franklin	95	3.8
Solar	Ground-mounted PV: Fixed Rack	Residential	3885 North Sheldon Road	Franklin	7193	15
Solar	Ground-mounted PV: Fixed Rack	Farm	280 Beaver Mdw Rd	Franklin	6437	34
Solar	Ground-mounted PV: Fixed Rack	Residential	5032 State Park Road	Franklin	7163	15
Solar	Ground-mounted PV: Pole	Residential	331 Sandy Bay Rd	Franklin	2718	7.5
Solar	Ground-mounted PV: Pole	Residential	3604 North Sheldon Rd	Franklin	7194	15
Solar	Ground-mounted PV: Tracker	Residential	507 Richard Rd	Franklin	3086	5.7
Solar	Ground-mounted PV: Tracker	Residential	280 Beaver Meadow Rd	Franklin	6437	34.2
Solar	Hot Water	Residential	50 Pierce Rd	Franklin		
Solar	Hot Water	Residential	5385 Main Street	Franklin		
Solar	Roof-Mounted PV	Farm	149 Bliss Road	Franklin	3891	5.4
Solar	Roof-Mounted PV	Residential	5600 State Park Rd	Franklin	3837	11.4
Solar	Roof-Mounted PV	Residential	1350 Towle Neighborhood Rd	Franklin	3106	4
Solar	Roof-Mounted PV	Residential	1090 Riley Road	Franklin	906	8
Solar	Roof-Mounted PV	Residential	35 Square Road	Franklin	2749	9.3
Solar	Roof-Mounted PV	Residential	1212 Dewing Rd	Franklin	2068	17.3
Solar	Roof-Mounted PV	Residential	4746 State Park Rd	Franklin	3717	10.8
Solar	Roof-Mounted PV	Residential	2334 Towle Neighborhood Rd	Franklin	3757	9.5
Solar	Roof-Mounted PV	Residential	1087 Colton Road	Franklin	16-0068	10
Solar	Roof-Mounted PV	Residential	3459 Rice Hill Rd	Franklin	8838	9
Wind	Small Wind	Residential	1651 Dewing Road	Franklin	95	2.5

Municipal Analysis & Targets - Georgia

The following is an explanation of the municipal energy data compiled by Northwest Regional Planning Commission (NRPC). The intent of the municipal energy data is to provide the municipalities with data required to ensure compliance with the requirements of Act 174 and "Enhanced Energy Planning" (24 V.S.A. 4352). The following tables contain data that estimates

current energy use and provides targets for future energy use across all sectors (transportation, heating, and electricity). It also sets targets for renewable energy generation within the municipality.

This data is meant to be a starting point for the municipality to begin planning its energy future and to talk about the changes that may need to occur within the municipality to ensure that local, regional and state energy goals are met. This includes the State of Vermont's goal to have 90% of all energy demand be met from renewable sources by 2050.

Figure 1 - Data Sources

ACS - American Community Survey
DOL -Vermont Department of Labor
DPS - Vermont Department of Public Service
EIA - Energy Information Administration
EVT - Efficiency Vermont
LEAP - Long-Range Energy Alternatives Planning
VEIC - Vermont Energy Investment Corporation
VTrans - Vermont Agency of Transportation

Data Sources

Estimates of current energy use consist primarily of data available from the American Community Survey (ACS), the Vermont Agency of Transportation (VTrans), the Vermont Department of Labor (DOL), and the Vermont Department of Public Service (DPS). Targets for future energy use are reliant upon the Long-range Energy Alternatives Planning (LEAP) analysis for the region completed the Vermont Energy Investment Corporation (VEIC). Targets for future energy generation have come from the regional planning commission and DPS. For more information on LEAP, see the Northwest Regional Energy Plan (www.nrpcvt.com). Targets for both future energy use and energy generation have been generally developed using a "top down" method of disaggregating regional data to the municipal level.

It is possible to develop "bottom up" data. For those municipalities interested in that approach, please see the Department of Public Service's Analysis and Targets Guidance (http://publicservice.vermont.gov/content/act-174-recommendations-and-determination-standards).

Please remember that the targets established by LEAP represent only one way to achieve energy goals. There may several other similar pathways that a municipality may choose to take in order to meet the 90x50 goal.

Below is a worksheet by worksheet explanation of the Municipal Template spreadsheet:

1. Municipal Data Summary

The following tables summarize all data that is required to be in a municipal plan if the plan is to meet the "determination" standards established by the Vermont Department of Public Service.

Table 1A: Current Municipal Transportation Energy Use			
Transportation Data	Municipal Data		
Total # of Passenger Vehicles (ACS 2011-2015)	3,637		
Average Miles per Vehicle (Vtrans)	11,356		
Total Miles Traveled	41,301,772		
Realized MPG (2013 - VTrans 2015 Energy Profile)	18.6		
Total Gallons Use per Year	2,220,525		
Transportation BTUs (Billion)	267		
Average Cost per Gallon of Gasoline (RPC)	2.31		
Gasoline Cost per Year	5,129,414		

This table uses data from the American Community Survey (ACS) and Vermont Agency of Transportation (VTrans) to calculate current transportation energy use and energy costs in the municipality.

Tal	ble 1B: Current M	unicipal Resider	itial Heating Energy	Use
Fuel Source	Municipal Households (ACS 2011-2015)	% of Municipal Households	Municipal Square Footage Heated	Municipal BTU (in Billions)
Natural Gas	348	21.6%	607,680	36
Propane	239	14.9%	447,312	27
Electricity	17	1.1%	32,368	2
Fuel Oil	684	42.5%	1,192,512	72
Coal	8	0.5%	15,232	1
Wood	299	18.6%	555,920	33
Solar	0	0.0%	0	0
Other	14	0.9%	26,656	2
No Fuel	0	0.0%	0	0
Total	1,609	100.0%	2,877,680	173

This table displays data from the ACS that estimates current municipal residential heating energy use.

Table 1C: Current Municipal Commercial Energy Use					
	Commercial Establishments in Municipality (VT DOL)	Estimated Thermal Energy BTUs per Commercial Establishment (in Billions) (VDPS)	Estimated Thermal Energy BTUs by Commercial Establishments in Municipality (in Billions)		
Municipal Commercial Energy Use	32	0.725	23		

The table uses data available from the Vermont Department of Labor (VT DOL) and the Vermont Department of Public Service (DPS) to estimate current municipal commercial establishment energy use in the municipality.

Table 1D: Current Electricit	Table 1D: Current Electricity Use				
Use Sector	Current Electricity Use				
Residential (kWh)	14,463,851				
Commercial and Industrial (kWh)	8,210,344				
Total (kWh)	22,674,195				

This table displays current electricity use within the municipality. This data is available from Efficiency Vermont (EVT).

Table 1E: Residential Thermal Efficiency Targets				
	2025	2035	2050	
"Residential - Increased Efficiency and Conservation (% of municipal households to be weatherized)"	5%	16%	78%	

This table displays targets for thermal efficiency of residential structures. The data is based on a methodology developed by DPS using data available from the regional Long-range Energy Alternatives Planning (LEAP) analysis and ACS. The data in this table represents the percentage of municipal households that will need to be weatherized in the target years. The target is cumulative.

Table 1F: Commercial Thermal E	ificiency To	arget	
	2025	2035	2050
"Commercial - Increased Efficiency and Conservation (% of commercial establishments to be weatherized)"	25%	25%	73%

This table shows the same information as Table 1E, but sets a target for commercial thermal efficiency and weatherization. Information from the VT DOL is required to complete this target. The target is cumulative.

Table 1G: Thermal Fuel Switching (Residential and Commercial) – Wood Systems

	2025	2035	2050
New Efficient Wood Heat Systems (in units)	6	15	66

This table provides a target for new wood heating systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 1H: Thermal Fuel Switching (Residential and Commercial) – Heat Pumps

	2025	2035	2050
New Heat Pumps (in units)	165	394	778

This table provides a target for new heat pump systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 11: Electricity Efficiency Targets

	2025	2035	2050
Increase Efficiency and Conservation (BTUs)	25.2%	48.3%	100.7%

Data in this table displays a target for increased electricity efficiency and conservation during the target years. This target will be met through conversions to high efficiency appliances, electric heat pumps, and electric light-duty vehicles. These targets were developed using regional LEAP analysis. The target is cumulative.

Table 1J: Use of Renewables - Transportation

	2025	2035	2050
Renewable Energy Use - Transportation (BTUs)	6.5%	25.9%	88.1%

This data displays targets for the percentage of transportation energy use coming from renewable sources during each target year. This target will be met through conversions to electric light-duty vehicles and biodiesel heavy-duty vehicles. This data was developed using the LEAP analysis. The target is cumulative.

Table 1K: Use of Renewable	s – Heating	ı	
	2025	2035	2050
Renewable Energy Use - Heating (BTUs)	46.7%	60.4%	88.4%

This data displays targets for the percentage of heating energy use coming from renewable sources during each target year. This target will be met through conversions to electric heat pumps and high efficiency wood heating systems. This data was developed using information from the LEAP analysis. The target is cumulative.

Table 1L: Use of Renewables	– Electricit	у	
	2025	2035	2050
Renewable Energy Use - Electricity (MWh)	8,360.3	16,720.7	25,334.3

This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1Q. The target is cumulative.

Table 1M: Transportation Fuel Switching Ta	argets – Ele	ctric Vehic	cles
	2025	2035	2050
Electric Vehicles	318	2,383	5,669

This tables displays a target for switching from fossil fuel based vehicles (gasoline and diesel) to electric vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

Table 1N: Transportation Fuel Switchin	g Targets -	- Biodiesel	
	2025	2035	2050
Biodiesel Vehicles	311	614	1,171

This tables displays a target for switching from fossil fuel based vehicles to biodiesel-powered vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

Table 10: Existir	ng Renewable Genera	tion
Renewable Type	MW	MWh
Solar	0.71	870.74
Wind	5.02	15,380.90
Hydro	0.00	0.00
Biomass	0.00	0.00
Other	0.00	0.00
Total Existing Generation	5.73	16,251.64

Table 10 shows existing renewable generation in the municipality, in MW and MWh, based on information available from the Vermont Department of Public Service.

Table 1P: Renewable	Generation Potentia	ıl .
Renewable Type	MW	MWh
Rooftop Solar	2	2,170
Ground-mounted Solar	657	806,230
Wind	870	2,667,113
Hydro	0.008	28
Biomass and Methane	0	0
Other	0	0
Total Renewable Generation Potential	1,529	3,475,541

Renewable generation potential is based on mapping completed by the regional planning commission that is based on the Municipal Determination Standards and associated guidance documents developed by DPS. The renewable generation potential is expressed in MW and MWh by the type of renewable resource (solar, wind, hydro, etc.).

Table 10: Renewable Generation Targets

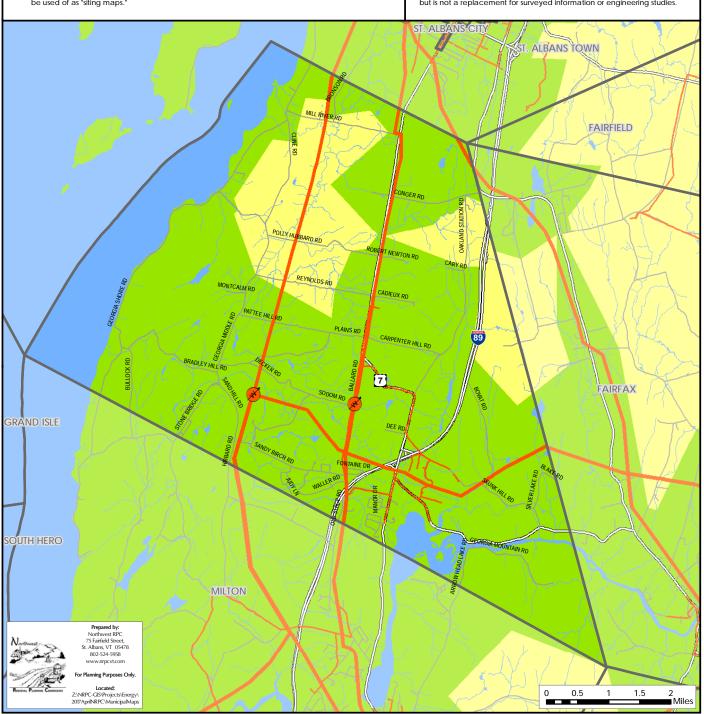
	2025	2035	2050
Total Renewable Generation Target (in MWh)	8,360.33	16,720.66	25,334.34

This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1L.

Table 1R: Sufficient Land?

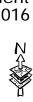
	Y/N
Solar	Υ
Wind	Υ

This table shows whether or not there is sufficient land in the municipality to meet the renewable generation targets based on the renewable generation potential in the municipality.


Utility Service Areas

Georgia, Vermont Act 174 The Energy Development Improvement Act of 2016

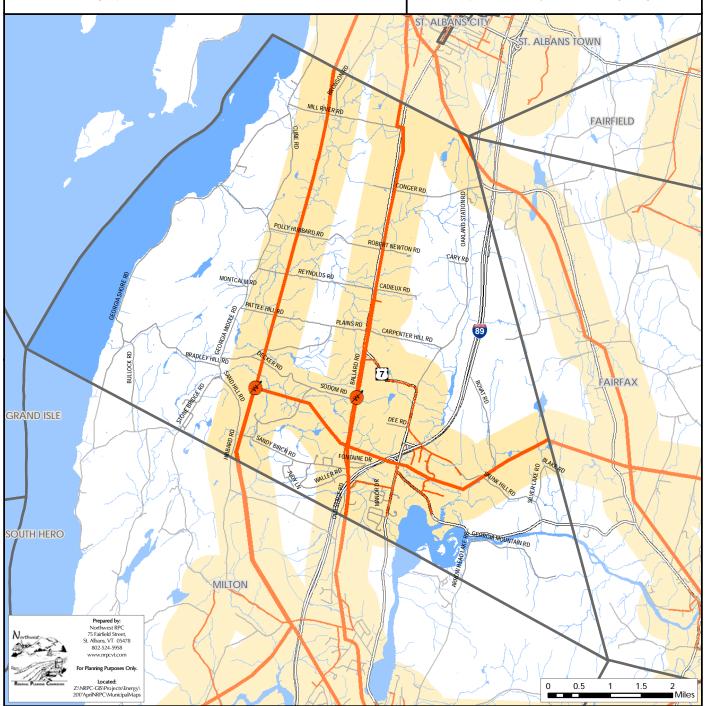
This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot investigation for a proposed facility and cannot be used of as "siting maps."


Legend Utility Service Area Features Substation Green Mountain Power 3 Phase Power Line **Swanton Village Electric** Vermont Electric Co-op Transmission Line Enosburg Falls Electric

Transmission & 3 Phase Power Infrastructure

Georgia, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "sitting maps."

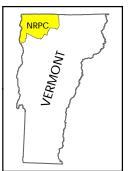

Legend

Substation

3 Phase Power Line

Transmission Line

1/2 Mile Buffer (3 Phase Power Line & Transmission Line)

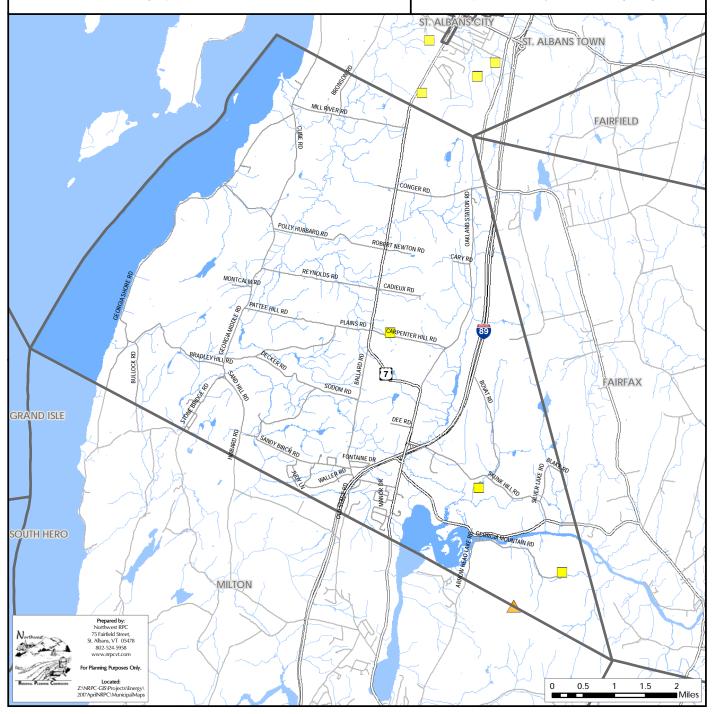


Existing Generation Facilities

Georgia, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend


Biomass Facility

Hydro Facility

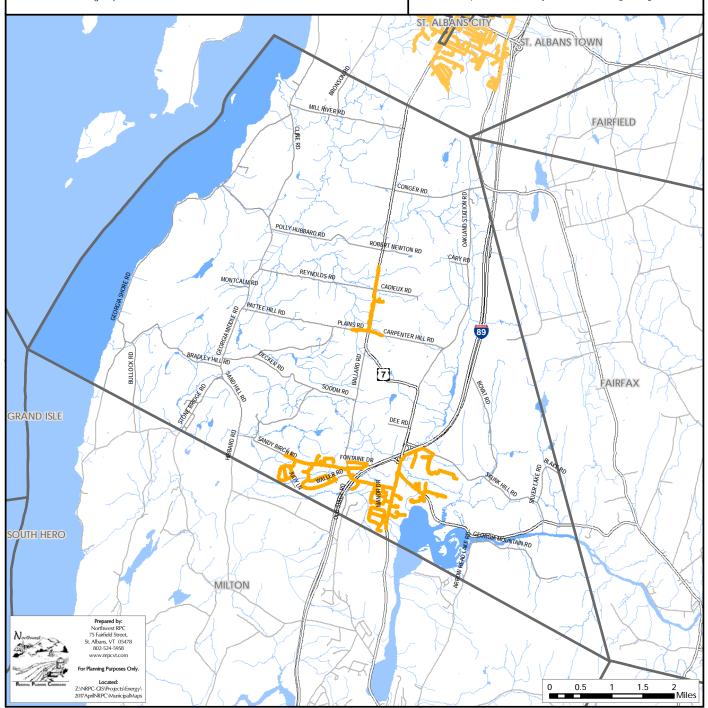
Solar Facility

Wind Facility

Note: Only generators 15kW are shown on the map. A full list of all generators is available.

Natural Gas Lines

Georgia, Vermont Act 174 The Energy Development Improvement Act of 2016


This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as 'siting maps."

Legend

Natural Gas Line

Hydro

Georgia, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as 'siting maps."

Legend

Substation

3 Phase Power LineTransmission Line

Designated Outstanding
Resource Water

Known Constraint - Designated National Wild & Scenic River

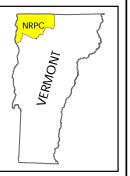
Possible Constraint -Stressed or Impaired Water

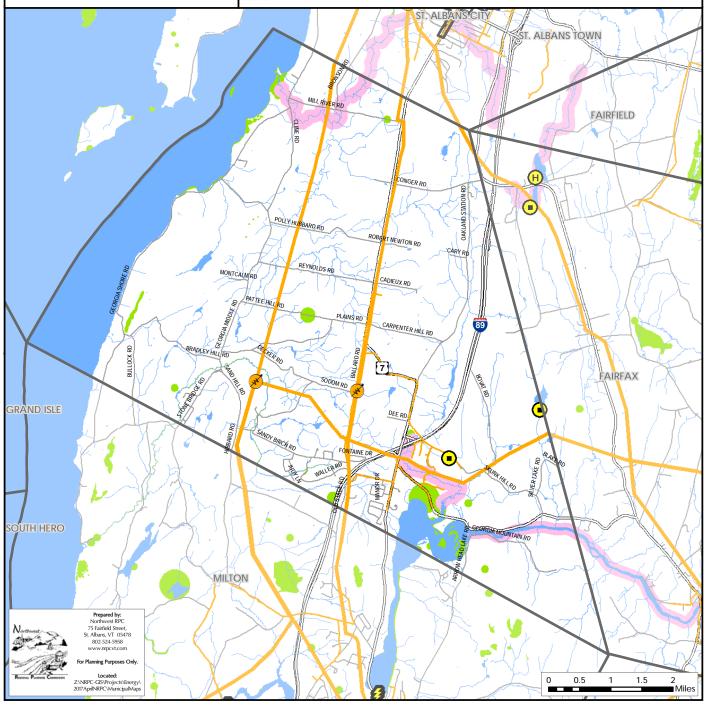
Possible Constraint - RINAs

Potential Hydroelectric Facility

< 50 kW Capacity</p>

> 50 kW Capacity


High Hazard with
< 50 kW Capacity


High Hazard with
> 50 kW Capacity

Operating Hydroelectric Facility

Dam not on National Wild and Scenic River

Dam on National Wild and Scenic River

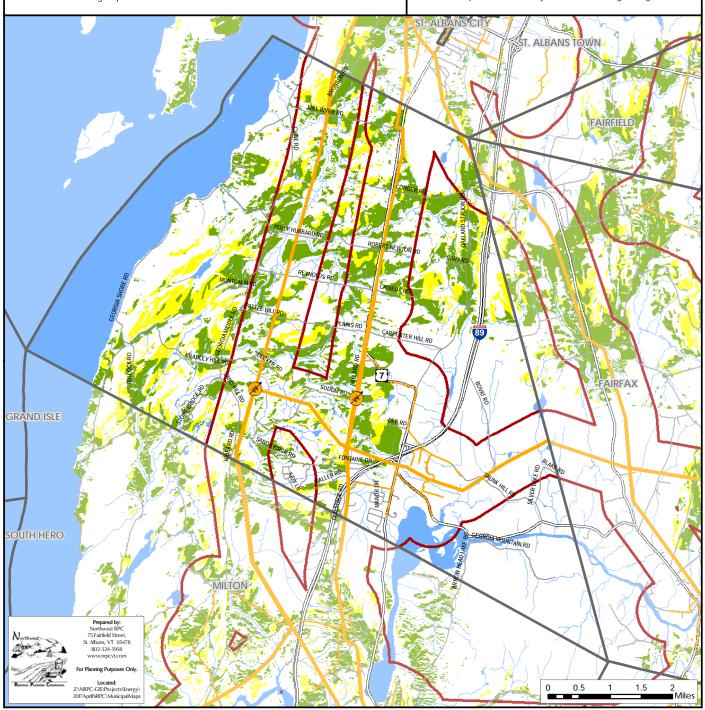
Solar

Georgia, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Substation


3 Phase Power Line

Transmission Line

1/2 Mile Buffer (3 Phase Power Line & Transmission Line)

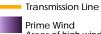
Prime Solar/No Known Constraints

Base Solar/Possible Constraints

Wind

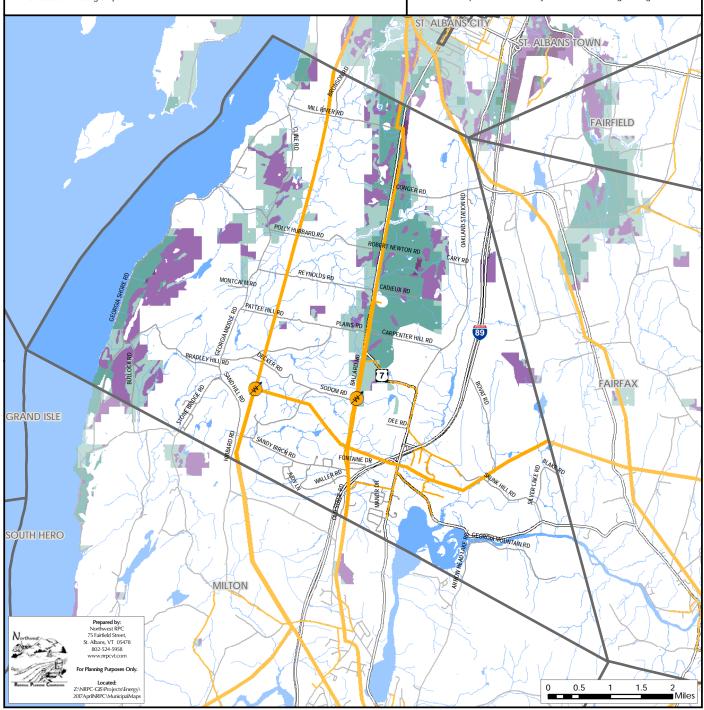
Georgia, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipallities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."



Legend

3 Phase Power Line


Areas of high wind potential and no known constraints.

Base Wind Areas of high wind potential and a presence of possible constraints.

Darker areas have higher wind speeds.

Darker areas have higher wind speeds.

Sources: VCGI

Woody Biomass

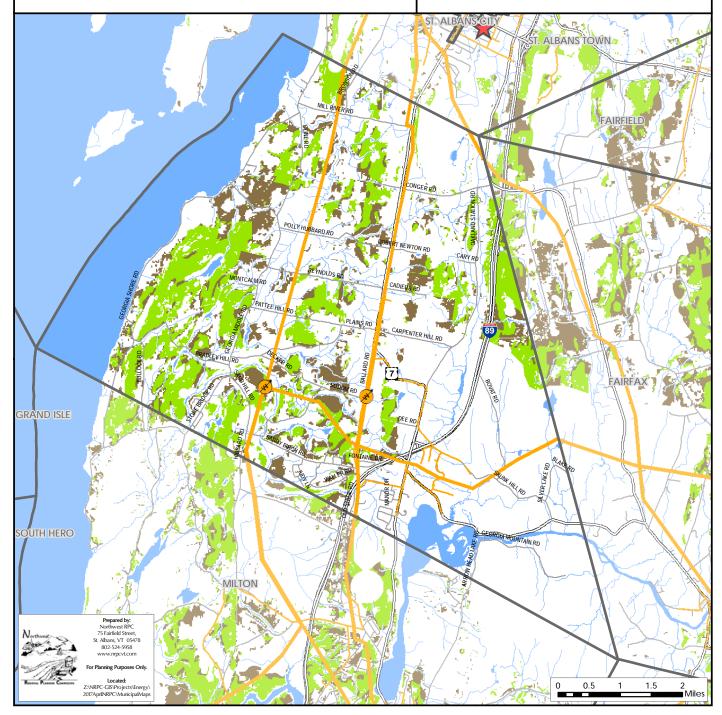
Georgia, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipallities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Biomass System

Cow Power



Substation

Prime Woody Biomass/No Known Constraints

Base Woody Biomass/Possible Constraints

	All	All Generators in Municipality	Municipality			
Category	Sub - Category	Organization Type	Address	City	CPG Number	Capacity kW
Solar	Ground-mounted PV: Fixed Rack	Residential	24 Old Quarry Rd	Georgia	2900	8.6
Solar	Ground-mounted PV: Fixed Rack	Business	331 Carpenter Hill Rd	Georgia	2408	17.5
Solar	Ground-mounted PV: Fixed Rack	Residential	1545 Skunk Hill Road	Georgia	6775	255
Solar	Ground-mounted PV: Pole	Residential	365 Carpenter Hill Road	Georgia	3541	10.2
Solar	Ground-mounted PV: Pole	Residential	1959 Ethan Allen Hwy	Georgia	2747	11.9
Solar	Ground-mounted PV: Pole	Residential	81 Town Common South	Georgia		10.3
Solar	Ground-mounted PV: Pole	Residential	784 Sandy Birch Rd	Georgia	3732	10.3
Solar	Ground-mounted PV: Pole	Residential	794 Stone Bridge Rd	Georgia	3243	5.9
Solar	Ground-mounted PV: Pole	Residential	5685 Georgia Shore Rd	Georgia	16-0541	2
Solar	Ground-mounted PV: Tracker	Residential	577 Georgia Middle Rd	Georgia	4195	7
Solar	Ground-mounted PV: Tracker	Residential	4149 HIGHBRIDGE RD	Georgia	2832	6.4
Solar	Ground-mounted PV: Tracker	Residential	2852 Ethan Allen Hwy	Georgia	2922	9
Solar	Ground-mounted PV: Tracker	Residential	599 Plains Road	Georgia	16-0454	7
Solar	Ground-mounted PV: Tracker	Residential	2895 Ethan Allen Hwy	Georgia	16-0809	11
Solar	Hot Water	Residential	133 Mansfield View Drive	Georgia		
Solar	Hot Water	Residential	2980 Ethan Allen Hwy	Georgia		
Solar	Roof-Mounted PV	Residential	108 Bradley Hill Rd	Georgia		9.6
Solar	Roof-Mounted PV	Residential	408 Sodom Rd	Georgia	3659	5.3
Solar	Roof-Mounted PV	Residential	5843 Georgia Shore Rd	Georgia	2403	6.5
Solar	Roof-Mounted PV	Residential	1007 Sodom Rd	Georgia	5707	8.8
Solar	Roof-Mounted PV	Residential	646 Fontaine Dr	Georgia	2057	2.9
Solar	Roof-Mounted PV	Residential	583 Stone Bridge Road	Georgia	2934	3.7
Solar	Roof-Mounted PV	Residential	5746 Ethan Allen Hwy	Georgia	3567	3.4
Solar	Roof-Mounted PV	Residential	43 Kissane Rd	Georgia	3182	4
Solar	Roof-Mounted PV	Residential	170 Fontaine Dr	Georgia	3299	4.3
Solar	Roof-Mounted PV	Business	7506 Ethan Allen Hwy	Georgia	619	~
Solar	Roof-Mounted PV	Residential	21 Old Quarry Rd	Georgia	5338	9

		All Generators in Municipality	ı Municipality			
Category	Sub - Category	Organization Type	Address	City	CPG Number	Capacity kW
Solar	Roof-Mounted PV	Residential	1740 Plains Rd	Georgia	6294	œ
Solar	Roof-Mounted PV	Residential	133 Mansfield View Dr	Georgia	3980	11.3
Solar	Roof-Mounted PV	Residential	161 Cary Road	Georgia		2
Solar	Roof-Mounted PV	Residential	286 Red Barn Rd	Georgia	5179	∞
Solar	Roof-Mounted PV	Residential	81 Bovat Rd	Georgia	3637	6.3
Solar	Roof-Mounted PV	Residential	1627 Georgia Mtn. Rd	Georgia		18.6
Solar	Roof-Mounted PV	Residential	727 Ethan Allen Highway	Georgia	2475	6.5
Solar	Roof-Mounted PV	Residential	7572 Ethan Allen Hwy	Georgia	1530	2.9
Solar	Roof-Mounted PV	Residential	691 Waller Rd	Georgia	1478	4.6
Solar	Roof-Mounted PV	Residential	573 Ballard Rd	Georgia	2287	3.7
Solar	Roof-Mounted PV	Residential	5420 Georgia Shore Rd	Georgia	3255	9.8
Solar	Roof-Mounted PV	Residential	190 Smittybrook Road	Georgia	773	4.8
Solar	Roof-Mounted PV	Residential	85 Riverview Court	Georgia	5094	10
Solar	Roof-Mounted PV	Residential	25 Mansfield View Rd	Georgia	2374	8.1
Solar	Roof-Mounted PV	Residential	1129 Georgia Middle Rd	Georgia	2783	4.7
Solar	Roof-Mounted PV	Residential	2432 Ballard Rd	Georgia	6622	3.8
Solar	Roof-Mounted PV	Residential	861 Stone Bridge Road	Georgia	16-0655	9
Solar	Roof-Mounted PV	Residential	20 Sand Hill Rd	Georgia	7061	9
Solar	Roof-Mounted PV	Residential	196 Bradley Hill Rd	Georgia	16-0713	8.2
Solar	Roof-Mounted PV	Residential	1046 Stone Bridge Rd.	Georgia	16-0206	4
Solar	Roof-Mounted PV	Residential	1007 Stone Bridge Road	Georgia	16-0652	9
Solar	Roof-Mounted PV	Residential	186 Austin Rd	Georgia	16-0376	2
Solar	Roof-Mounted PV	Residential	146 Fontaine Dr	Georgia	16-0545	10
Solar	Roof-Mounted PV	Residential	362 Woods Hollow Drive	Georgia	16-0288	7.6
Solar	Roof-Mounted PV	Residential	1057 Decker Rd	Georgia	16-0768	10
Solar	Roof-Mounted PV	Residential	6 Wilder Drive	Georgia	16-0814	9
Solar	Roof-Mounted PV	Residential	980 Decker Road	Georgia		7.6

	,	All Generators in Municipality	Municipality			
Category	Sub - Category	Organization Type	Address	City	CPG Number	Capacity kW
Solar	Roof-Mounted PV	Residential	33 Bovat Road	Georgia	16-1667	8.2
Solar	Roof-Mounted PV	Residential	5769 Georgia Shore Rd	Georgia		7.5
Solar	Roof-Mounted PV	Residential	759 Sandy Birch Rd	Georgia	6940	7
Solar	Roof-Mounted PV	Residential	207 Bronson Rd	Georgia	16-0801	8.2
Solar	Roof-Mounted PV	Residential	1803 Georgia Plains Rd	Georgia	16-0840	3.6
Solar	Roof-Mounted PV	Residential	681 Pattee Hill Road	Georgia		3.8
Solar	Roof-Mounted PV	Residential	553 Fontaine Rd	Georgia	6814	2
Solar	Roof-Mounted PV	Residential	289 Bradley Hill Rd	Georgia	16-0419	2
Solar	Roof-Mounted PV	Residential	2018 Georgia Plains Rd	Georgia	16-0763	7.6
Solar	Roof-Mounted PV	Residential	138 Ridgeview Dr	Georgia	16-0767	3
Solar	Roof-Mounted PV	Residential	6478 Georgia Shore Rd N	Georgia	16-0783	9.6
Solar	Roof-Mounted PV	Residential	157 Red Barn Hill Rd	Georgia	6732	2
Solar	Roof-Mounted PV	Residential	1462 Sandy Birch Road	Georgia	16-0089	3.8
Solar	Roof-Mounted PV	Residential	575 Spooner Rd	Georgia	16-0751	2
Solar	Roof-Mounted PV	Residential	308 Nottingham Drive	Georgia		က
Solar	Roof-Mounted PV	Residential	944 Stone Bridge Rd	Georgia	16-0766	9
Solar	Roof-Mounted PV	Residential	354 Old Stage Rd	Georgia	16-1117	9
Solar	Roof-Mounted PV	Residential	214 Manor Dr	Georgia	16-1156	7.6
Solar	Roof-Mounted PV	Residential	192 Decker Road	Georgia	16-1433	3.6
Solar	Roof-Mounted PV	Residential	116 Kay Dr	Georgia	16-1113	33
Solar	Roof-Mounted PV	Residential	699 Sandy Birch Road	Georgia	16-1543	3.6
Solar	Roof-Mounted PV	Residential	279 Bronson Road	Georgia		8.2
Solar	Roof-Mounted PV	Residential	719 Stone Bridge Rd	Georgia	16-1314	വ
Wind	Commercial Wind	Business	Georgia Mountain	Georgia		10000
Wind	Small Wind	Residential	3482 Ethan Allen Hwy	Georgia	266	9.5
Wind	Small Wind	Residential	487 Mill River Rd	Georgia	2	7.1

Municipal Analysis & Targets - Grand Isle

The following is an explanation of the municipal energy data compiled by Northwest Regional Planning Commission (NRPC). The intent of the municipal energy data is to provide the municipalities with data required to ensure compliance with the requirements of Act 174 and "Enhanced Energy Planning" (24 V.S.A. 4352). The following tables contain data that estimates

current energy use and provides targets for future energy use across all sectors (transportation, heating, and electricity). It also sets targets for renewable energy generation within the municipality.

This data is meant to be a starting point for the municipality to begin planning its energy future and to talk about the changes that may need to occur within the municipality to ensure that local, regional and state energy goals are met. This includes the State of Vermont's goal to have 90% of all energy demand be met from renewable sources by 2050.

Figure 1 - Data Sources

ACS - American Community Survey
DOL -Vermont Department of Labor
DPS - Vermont Department of Public Service
EIA - Energy Information Administration
EVT - Efficiency Vermont
LEAP - Long-Range Energy Alternatives Planning
VEIC - Vermont Energy Investment Corporation
VTrans - Vermont Agency of Transportation

Data Sources

Estimates of current energy use consist primarily of data available from the American Community Survey (ACS), the Vermont Agency of Transportation (VTrans), the Vermont Department of Labor (DOL), and the Vermont Department of Public Service (DPS). Targets for future energy use are reliant upon the Long-range Energy Alternatives Planning (LEAP) analysis for the region completed the Vermont Energy Investment Corporation (VEIC). Targets for future energy generation have come from the regional planning commission and DPS. For more information on LEAP, see the Northwest Regional Energy Plan (www.nrpcvt.com). Targets for both future energy use and energy generation have been generally developed using a "top down" method of disaggregating regional data to the municipal level.

It is possible to develop "bottom up" data. For those municipalities interested in that approach, please see the Department of Public Service's Analysis and Targets Guidance (http://publicservice.vermont.gov/content/act-174-recommendations-and-determination-standards).

Please remember that the targets established by LEAP represent only one way to achieve energy goals. There may several other similar pathways that a municipality may choose to take in order to meet the 90x50 goal.

Below is a worksheet by worksheet explanation of the Municipal Template spreadsheet:

1. Municipal Data Summary

The following tables summarize all data that is required to be in a municipal plan if the plan is to meet the "determination" standards established by the Vermont Department of Public Service.

Table 1A: Current Municipal Transportation Energy Use			
Transportation Data	Municipal Data		
Total # of Passenger Vehicles (ACS 2011-2015)	1,939		
Average Miles per Vehicle (Vtrans)	11,356		
Total Miles Traveled	22,019,284		
Realized MPG (2013 - VTrans 2015 Energy Profile)	18.6		
Total Gallons Use per Year	1,183,832		
Transportation BTUs (Billion)	143		
Average Cost per Gallon of Gasoline (RPC)	2.31		
Gasoline Cost per Year	2,734,653		

This table uses data from the American Community Survey (ACS) and Vermont Agency of Transportation (VTrans) to calculate current transportation energy use and energy costs in the municipality.

Table 1B: Current Municipal Residential Heating Energy Use					
Fuel Source	Municipal Households (ACS 2011-2015)	% of Municipal Households	Municipal Square Footage Heated	Municipal BTU (in Billions)	
Natural Gas	30	3.3%	42,336	3	
Propane	265	28.7%	453,872	27	
Electricity	57	6.2%	83,184	5	
Fuel Oil	406	44.0%	713,888	43	
Coal	0	0.0%	0	0	
Wood	161	17.4%	302,320	18	
Solar	0	0.0%	0	0	
Other	4	0.4%	7,616	0	
No Fuel	0	0.0%	0	0	
Total	923	100.0%	1,603,216	96	

This table displays data from the ACS that estimates current municipal residential heating energy use.

Table 1C: Current Municipal Commercial Energy Use					
	Commercial Establishments in Municipality (VT DOL)	Estimated Thermal Energy BTUs per Commercial Establishment (in Billions) (VDPS)	Estimated Thermal Energy BTUs by Commercial Establishments in Municipality (in Billions)		
Municipal Commercial Energy Use	49	0.725	36		

The table uses data available from the Vermont Department of Labor (VT DOL) and the Vermont Department of Public Service (DPS) to estimate current municipal commercial establishment energy use in the municipality.

Table 1D: Current Electricity Use				
Use Sector Current Electricity Use				
Residential (kWh)	8,297,163			
Commercial and Industrial (kWh)	12,572,089			
Total (kWh)	20,869,251			

This table displays current electricity use within the municipality. This data is available from Efficiency Vermont (EVT).

Table 1E: Residential Thermal Efficiency Targets			
	2025	2035	2050
"Residential - Increased Efficiency and Conservation (% of municipal households to be weatherized)"	5%	16%	78%

This table displays targets for thermal efficiency of residential structures. The data is based on a methodology developed by DPS using data available from the regional Long-range Energy Alternatives Planning (LEAP) analysis and ACS. The data in this table represents the percentage of municipal households that will need to be weatherized in the target years. The target is cumulative.

Table 1F: Commercial Thermal Efficiency Target			
	2025	2035	2050
"Commercial - Increased Efficiency and Conservation (% of commercial establishments to be weatherized)"	25%	25%	73%

This table shows the same information as Table 1E, but sets a target for commercial thermal efficiency and weatherization. Information from the VT DOL is required to complete this target. The target is cumulative.

Table 1G: Thermal Fuel Switching (Residential and Commercial) – Wood Systems

	2025	2035	2050
New Efficient Wood Heat Systems (in units)	0	0	5

This table provides a target for new wood heating systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 1H: Thermal Fuel Switching (Residential and Commercial) – Heat Pumps

	2025	2035	2050
New Heat Pumps (in units)	110	253	473

This table provides a target for new heat pump systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 11: Electricity Efficiency Targets

	2025	2035	2050
Increase Efficiency and Conservation (BTUs)	25.2%	48.3%	100.7%

Data in this table displays a target for increased electricity efficiency and conservation during the target years. This target will be met through conversions to high efficiency appliances, electric heat pumps, and electric light-duty vehicles. These targets were developed using regional LEAP analysis. The target is cumulative.

Table 1J: Use of Renewables - Transportation

	2025	2035	2050
Renewable Energy Use - Transportation (BTUs)	9.5%	31.2%	90.2%

This data displays targets for the percentage of transportation energy use coming from renewable sources during each target year. This target will be met through conversions to electric light-duty vehicles and biodiesel heavy-duty vehicles. This data was developed using the LEAP analysis. The target is cumulative.

Table 1K: Use of Renewables – Heating				
	2025	2035	2050	
Renewable Energy Use - Heating (BTUs)	45.1%	58.3%	86.2%	

This data displays targets for the percentage of heating energy use coming from renewable sources during each target year. This target will be met through conversions to electric heat pumps and high efficiency wood heating systems. This data was developed using information from the LEAP analysis. The target is cumulative.

Table 1L: Use of Renewables – Electricity				
2025 2035 2050				
Renewable Energy Use - Electricity (MWh)	3,650.3	7,300.7	11,061.6	

This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1Q. The target is cumulative.

Table TM: Transportation Fuel Switching Ta	argets – Ele	ctric Venic	cies
	2025	2035	2050

170

1,270

3,022

This tables displays a target for switching from fossil fuel based vehicles (gasoline and diesel) to electric vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

Table 1N: Transportation Fuel Switching Targets - Biodiesel			
	2025	2035	2050
Biodiesel Vehicles	295	588	1,132

This tables displays a target for switching from fossil fuel based vehicles to biodiesel-powered vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

Electric Vehicles

Table 10: Existing Renewable Generation			
Renewable Type	MW	MWh	
Solar	0.27	331.13	
Wind	0.13	403.18	
Hydro	0.00	0.00	
Biomass	0.00	0.00	
Other	0.00	0.00	
Total Existing Generation	0.40	734.31	

Table 10 shows existing renewable generation in the municipality, in MW and MWh, based on information available from the Vermont Department of Public Service.

Table 1P: Renewable Generation Potential			
Renewable Type	MW	MWh	
Rooftop Solar	1	1,432	
Ground-mounted Solar	477	584,588	
Wind	1,330	4,077,473	
Hydro	0	0	
Biomass and Methane	0	0	
Other	0	0	
Total Renewable Generation Potential	1,808	4,663,494	

Renewable generation potential is based on mapping completed by the regional planning commission that is based on the Municipal Determination Standards and associated guidance documents developed by DPS. The renewable generation potential is expressed in MW and MWh by the type of renewable resource (solar, wind, hydro, etc.).

Table 10: Renewable Generation Targets

	2025	2035	2050
Total Renewable Generation Target (in MWh)	3,650.33	7,300.66	11,061.61

This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1L.

Table 1R: Sufficient Land?

	Y/N
Solar	Υ
Wind	Υ

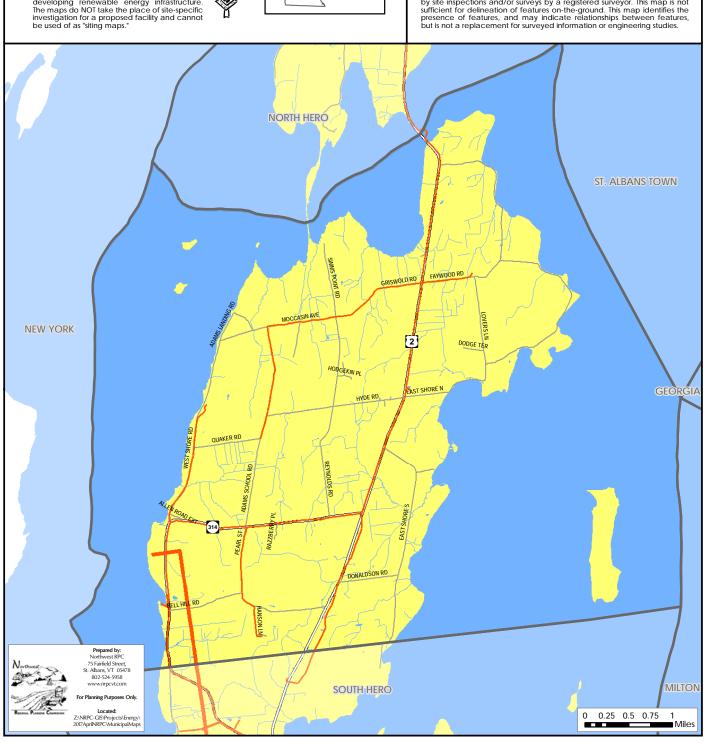
This table shows whether or not there is sufficient land in the municipality to meet the renewable generation targets based on the renewable generation potential in the municipality.

Utility Service Areas

Grand Isle, Vermont Act 174 The Energy Development Improvement Act of 2016

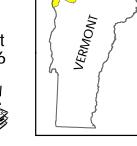
This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "sitting maps."

Legend **Utility Service Area Features**



3 Phase Power Line Transmission Line

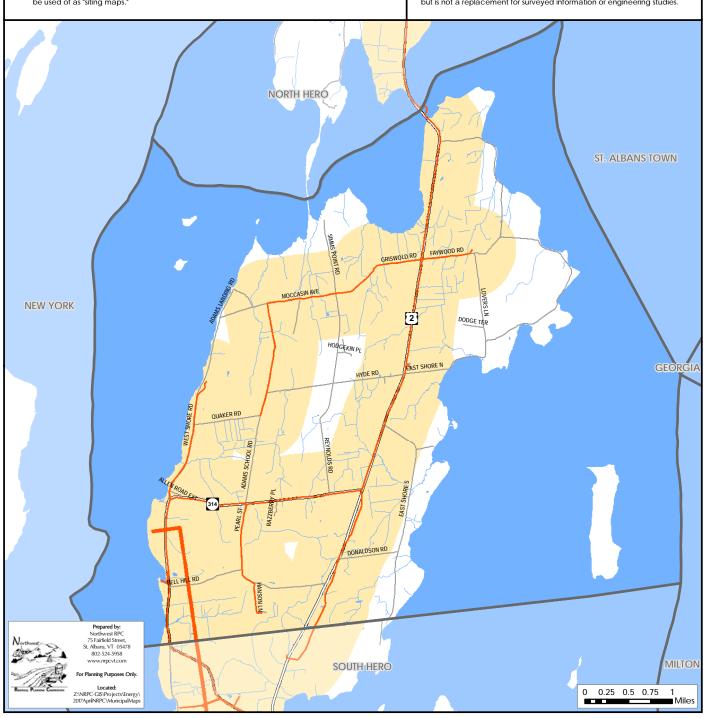
Vermont Electric Co-op


Enosburg Falls Electric

Transmission & 3 Phase **Power Infrastructure**

Grand Isle, Vermont Act 174 The Energy Development Improvement Act of 2016

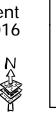
This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "sitting maps."

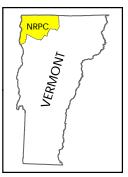

NRPC,

Legend

Substation

3 Phase Power Line Transmission Line

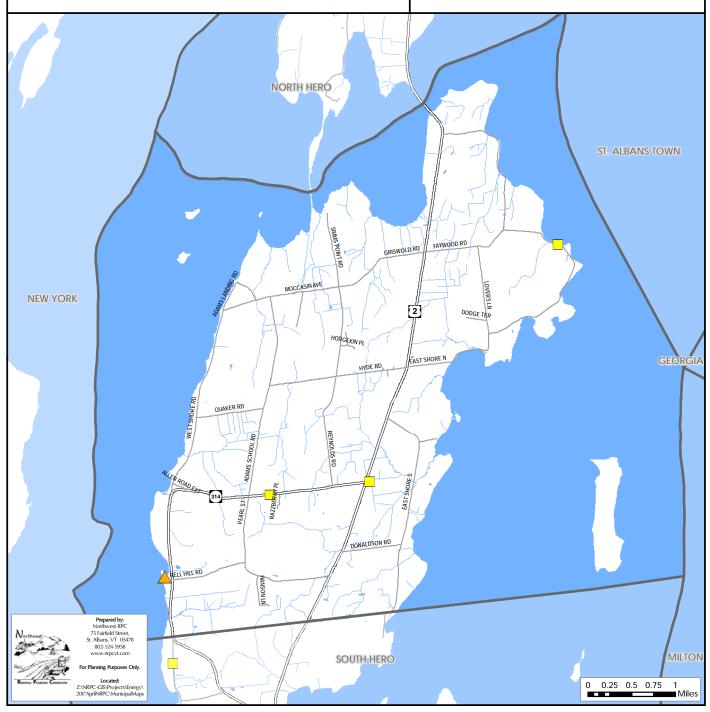

1/2 Mile Buffer (3 Phase Power Line & Transmission Line)



Existing Generation Facilities

Grand Isle, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."


Legend

Biomass Facility

Hydro Facility

Note: Only generators 15kW are shown on the map. A full list of all generators is available. Solar Facility

Wind Facility

Hydro

Grand Isle, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-spectic investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Substation

3 Phase Power LineTransmission Line

Designated Outstanding Resource Water

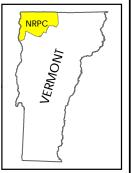
Known Constraint - Designated National Wild & Scenic River

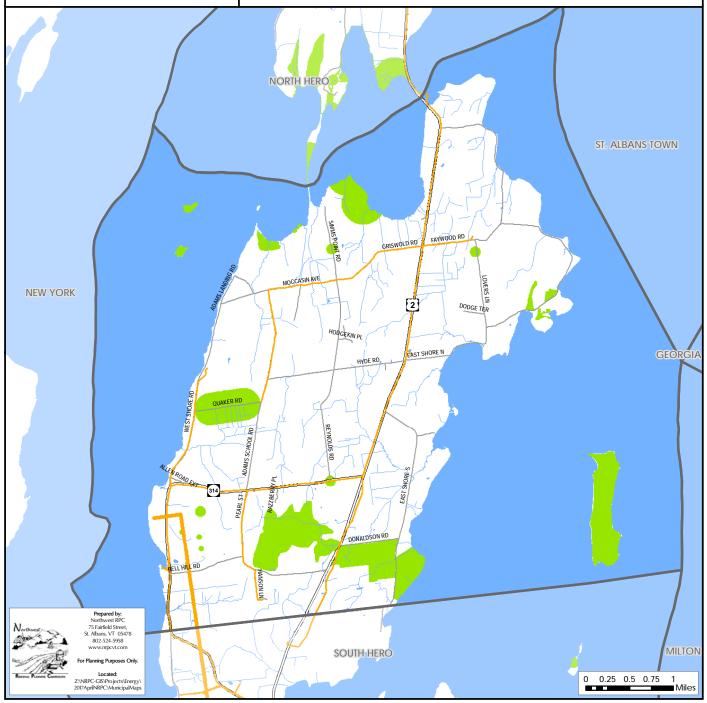
Possible Constraint -Stressed or Impaired Water

Possible Constraint - RINAs

Potential Hydroelectric Facility

< 50 kW Capacity</p>

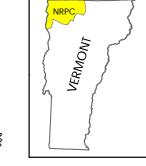

> 50 kW Capacity


High Hazard with
< 50 kW Capacity
High Hazard with
> 50 kW Capacity

Operating Hydroelectric Facility

Dam not on National
Wild and Scenic River

Dam on National Wild and Scenic River



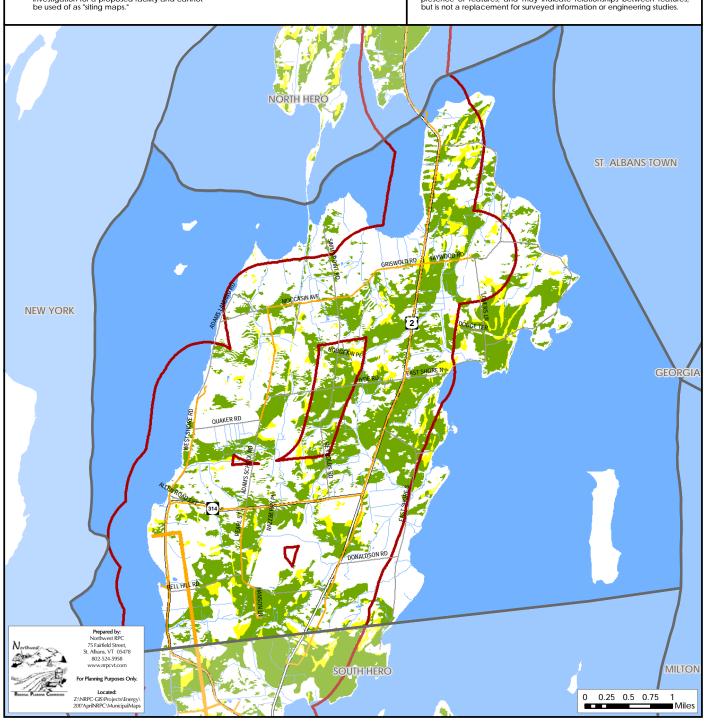
Solar

Grand Isle, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "sitting maps."

Legend

Substation


3 Phase Power Line

Transmission Line

1/2 Mile Buffer (3 Phase Power Line & Transmission Line)

Prime Solar/No Known Constraints

Base Solar/Possible Constraints

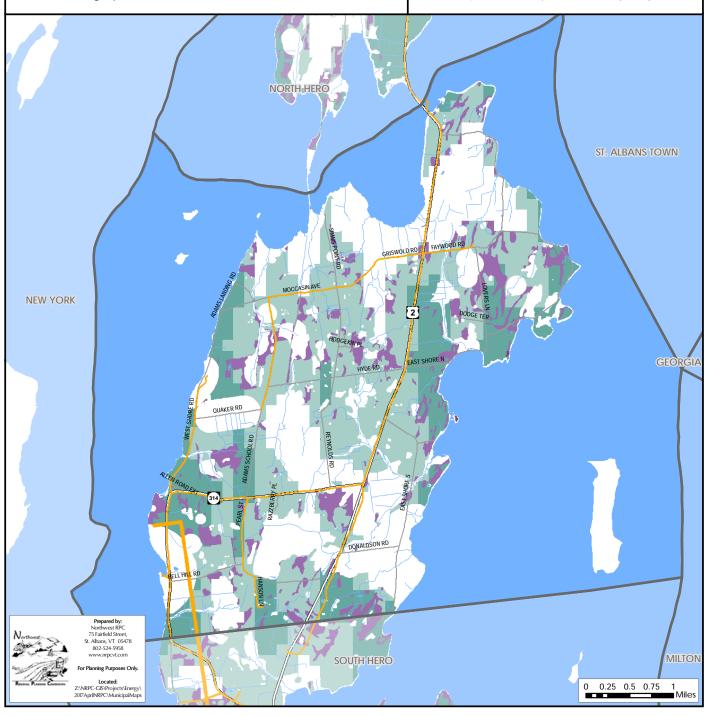
Wind

Grand Isle, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipallities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

📈 Substation


3 Phase Power Line Transmission Line

Prime Wind Areas of high wind potential and no

known constraints. Darker areas have higher wind speeds.

Base Wind Areas of high wind potential and a presence of possible constraints.

Darker areas have higher wind speeds.

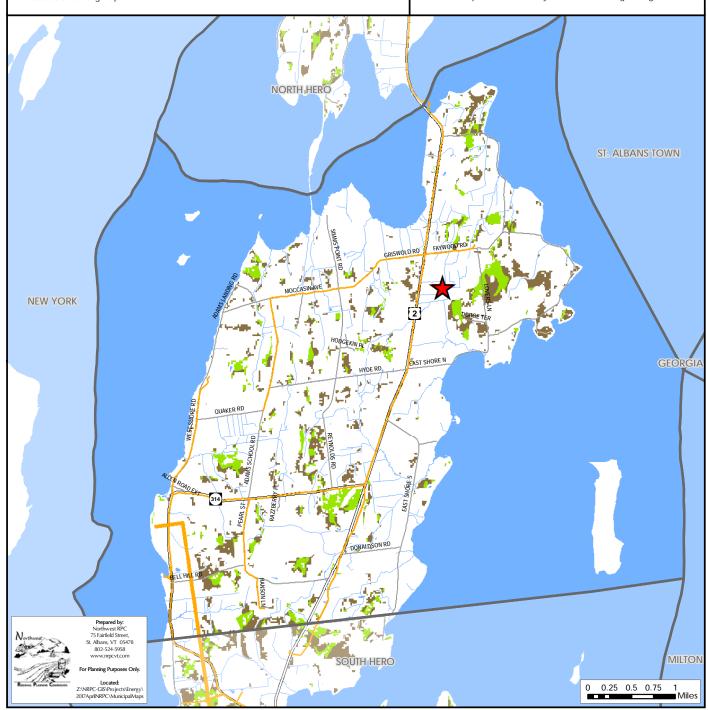
Woody Biomass

Grand Isle, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipallities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Biomass System

Cow Power



Substation

Transmission Line Prime Woody Biomass/No Known Constraints

Base Woody Biomass/Possible Constraints

Ground-mounted PV: Fixed Rack Residential 1 Hoog Lone Ground-mounted PV: Fixed Rack Residential 29 Faywood Rd Ground-mounted PV: Fole Residential 3 Canamak Dr Ground-mounted PV: Tracker Farm 69 East Shore North Hot Water Residential 10 Lightning Road Hot Water Residential 122 Reynolds Road Hot Water Residential 4 Maynard Court Hot Water Residential 69 East Shore North Roof-Mounted PV Residential 69 East Shore North Roof-Mounted PV Residential 137 East Shore North Roof-Mounted PV Residential 30 Cooper Bay Lane Roof-Mounted PV Residential 30 Cooper Bay Lane Roof-Mounted PV Residential 12 Adams Landing Rd Roof-Mounted PV Residential 30 Cooper Bay Lane Roof-Mounted PV Residential 12 Adams Landing Rd Roof-Mounted PV Residential 30 Cooper Bay Lane Roof-Mounted PV Residential 10 Tebeau Terrace Roof-Mounted PV Residential 30 Cooper Bay Lane Roof-Mounted PV Residential 11 Island Meadow Lane		All	II Generators in Municipality	Municipality			
Ground-mounted PV: Fixed Rack Residential 1 Hoag Lane Ground-mounted PV: Fixed Rack Residential 3 Canamak Dr Ground-mounted PV: Pole Residential 3 Canamak Dr Ground-mounted PV: Pole Residential 10 Lightning Road Hot Water Residential 12 Reynolds Road Hot Water Residential 4 Maynard Court Roof-Mounted PV Residential 112 Reat Shore North Roof-Mounted PV Residential 137 East Shore North Roof-Mounted PV Residential 12 Adams Landing Rd Roof-Mounted PV Residential 12 Reard Street Roof-Mounted PV Residential 12 Reard Street Roof-Mounted PV Residential 12 Adams Landing Rd Roof-Mounted PV Residential 12 Reard Shore North Roof-Mounted PV Residential 12 Radams Landing Rd Roof-Mounted PV Residential 12 Radams Landing Rd Roof-Mounted PV Residential 32 Lovers Lane Roof-Mounted PV Residential 1 Island Meadow Lane Roof-Mounted PV Residential 1 Island Meadow Lane Roof-Mounted PV Residential 1 Island Meadow Lane	Category	Sub - Category	Organization Type	Address	City	CPG Number	Capacity kW
Ground-mounted PV: Fixed Rack Ground-mounted PV: Fixed Rack Ground-mounted PV: Tracker Ground-mounted PV: Tracker Hot Water Hot Water Hot Water Hot Water Hot Water Hot Water Residential Roof-Mounted PV Residential Hot Dodg Feat Shore North Roof-Mounted PV Residential Roof-Mounted PV Residential Roof-Mounted PV Residential Roof-Mounted PV Residential Residential Residential Residential Roof-Mounted PV Residential Residential Residential Residential Roof-Mounted PV Residential Residential Residential Roof-Mounted PV Residential Residential Residential Residential Residential Roof-Mounted PV Residential Residential Residential Roof-Mounted PV Residential Residential Residential Roof-Mounted PV Residential Residential Roof-Mounted PV Residential Residentia	Solar	Ground-mounted PV: Fixed Rack	Residential	1 Hoag Lane	Grand Isle	4289	8.8
Ground-mounted PV: Pole Residential 3 Canamak Dr Ground-mounted PV: Tracker Farm 69 East Shore North Hot Water Residential 1122 Reynolds Road Hot Water Residential 4 Maynard Court Hot Water Residential 4 Maynard Court Hot Water Residential 4 Maynard Court Hot Water Residential 69 East Shore North Roof-Mounted PV Residential 112 Pearl Street Roof-Mounted PV Residential 112 Pearl Street Roof-Mounted PV Residential 30 Cooper Bay Lane Roof-Mounted PV Residential 12 Adams Landing Rd Roof-Mounted PV Residential 12 Adams Landing Rd Roof-Mounted PV Residential 12 Reynolds Rd Roof-Mounted PV Residential 12 Reynolds Rd Roof-Mounted PV Residential 328 East Shore North Roof-Mounted PV Residential 328 Lovers Lane Roof-Mounted PV Residential 32 Lovers Lane Roof-Mounted PV Residential 32 Lovers Lane Roof-Mounted PV Residential 32 Lovers Lane Roof-Mounted PV Residential 33 Lovers Lane Roof-Mounted PV Residential 11 Island Meadow Lane Roof-Mounted PV Residential 11 Island Meadow Lane Roof-Mounted PV Residential 11 Island Meadow Lane	Solar	Ground-mounted PV: Fixed Rack	Residential	29 Faywood Rd	Grand Isle	6615	
Ground-mounted PV: Tracker Farm 69 East Shore North Hot Water Residential 122 Reynolds Road Hot Water Residential 122 Reynolds Road Hot Water Residential 4 Maynard Court Hot Water Residential 69 East Shore North Roof-Mounted PV Residential 60 Id Town Ln Roof-Mounted PV Residential 137 East Shore North Roof-Mounted PV Residential 137 East Shore North Roof-Mounted PV Residential 137 East Shore North Roof-Mounted PV Residential 30 Cooper Bay Lane Roof-Mounted PV Residential 12 Adams Landing Rd Roof-Mounted PV Residential 12 Adams Landing Rd Roof-Mounted PV Residential 122 Reynolds Residential 122 Roof-Mounted PV Residential 123 Lovers Lane Roof-Mounted PV Residential 181 Adams School Rd Roof-Mounted PV Residential 181 Island Meadow Lane Roof-Mounted PV Residential 181 Island Meadow Lane Roof-Mounted PV Residential 181 Island Meadow Lane	Solar	Ground-mounted PV: Pole	Residential	3 Canamak Dr	Grand Isle	3720	8.9
Hot Water Residential 10 Lightning Road Hot Water Residential 122 Reynolds Road Hot Water Residential 4 Maynard Court Hot Water Residential 69 East Shore North Roof-Mounted PV Residential 137 East Shore N Roof-Mounted PV Residential 112 Pearl Street Roof-Mounted PV Residential 30 Cooper Bay Lane Roof-Mounted PV Residential 30 Cooper Bay Lane Roof-Mounted PV Residential 12 Adams Landing Rd Roof-Mounted PV Residential 10 Tebeau Terrace Roof-Mounted PV Residential 283 East Shore North Roof-Mounted PV Residential 122 Reynolds Rd Roof-Mounted PV Residential 32 Lovers Lane Roof-Mounted PV Residential 32 Lovers Lane Roof-Mounted PV Residential 6 Canamak West Roof-Mounted PV Residential 6 Canamak West Roof-Mounted PV Residential 1 Island Meadow Lane Roof-Mounted PV Residential 1 Island Meadow Lane Roof-Mounted PV Residential 1 Island Meadow Lane	Solar	Ground-mounted PV: Tracker	Farm	69 East Shore North	Grand Isle		4
Hot Water Residential 122 Reynolds Road Hot Water Residential 4 Maynard Court Hot Water Residential 4 Maynard Court Roof-Mounted PV Residential 146 East Shore North Roof-Mounted PV Residential 137 East Shore N Roof-Mounted PV Residential 30 Cooper Bay Lane Roof-Mounted PV Residential 30 Cooper Bay Lane Roof-Mounted PV Residential 12 Adams Landing Rd Roof-Mounted PV Residential 12 Adams Landing Rd Roof-Mounted PV Residential 283 East Shore North Roof-Mounted PV Residential 283 East Shore North Roof-Mounted PV Residential 283 East Shore North Roof-Mounted PV Residential 32 Lovers Lane Roof-Mounted PV Residential 32 Lovers Lane Roof-Mounted PV Residential 6 Canamak West Roof-Mounted PV Residential 6 Canamak West Roof-Mounted PV Residential 1 Island Meadow Lane Roof-Mounted PV Residential 1 Island Meadow Lane	Solar	Hot Water	Residential	10 Lightning Road	Grand Isle		
Hot Water Residential 4 Maynard Court Hot Water Residential 69 East Shore North Roof-Mounted PV Residential 137 East Shore North Roof-Mounted PV Residential 12 Pearl Street Roof-Mounted PV Residential 30 Cooper Bay Lane Roof-Mounted PV Residential 12 Adams Landing Rd Roof-Mounted PV Residential 12 Adams Landing Rd Roof-Mounted PV Residential 283 East Shore North Roof-Mounted PV Residential 283 East Shore North Roof-Mounted PV Residential 12 Adams Landing Rd Roof-Mounted PV Residential 32 Lovers Lane Roof-Mounted PV Residential 8 Cedar Point Rd Roof-Mounted PV Residential 6 Canamak West Roof-Mounted PV Residential 82 Adams School Rd Roof-Mounted PV Residential 11 Island Meadow Lane Roof-Mounted PV Residential 11 Island Meadow Lane	Solar	Hot Water	Residential	122 Reynolds Road	Grand Isle		
Residential 69 East Shore North Roof-Mounted PV Residential 146 East Shore North Roof-Mounted PV Residential 137 East Shore N Roof-Mounted PV Residential 30 Cooper Bay Lane Roof-Mounted PV Residential 30 Cooper Bay Lane Roof-Mounted PV Residential 12 Adams Landing Rd Roof-Mounted PV Residential 12 Reynolds Rd Roof-Mounted PV Residential 122 Reynolds Rd Roof-Mounted PV Residential 122 Reynolds Rd Roof-Mounted PV Residential 122 Reynolds Rd Roof-Mounted PV Residential 8 Cedar Point Rd Roof-Mounted PV Residential 32 Lovers Lane Roof-Mounted PV Residential 6 Canamak West Roof-Mounted PV Residential 6 Canamak West Roof-Mounted PV Residential 11 Island Meadow Lane Roof-Mounted PV Residential 11 Island Meadow Lane	Solar	Hot Water	Residential	4 Maynard Court	Grand Isle		
Roof-Mounted PVResidential146 East Shore NorthRoof-Mounted PVResidential137 East Shore NRoof-Mounted PVResidential112 Pearl StreetRoof-Mounted PVResidential9 Dodge TerraceRoof-Mounted PVResidential12 Adams Landing RdRoof-Mounted PVResidential10 Tebeau TerraceRoof-Mounted PVResidential122 Reynolds RdRoof-Mounted PVResidential122 Reynolds RdRoof-Mounted PVResidential8 Cedar Point RdRoof-Mounted PVResidential8 Cedar Point RdRoof-Mounted PVResidential8 Cedar Point RdRoof-Mounted PVResidential6 Canamak WestRoof-Mounted PVResidential6 Canamak WestRoof-Mounted PVResidential11 Island Meadow LaneRoof-Mounted PVResidential11 Island Meadow Lane	Solar	Hot Water	Residential	69 East Shore North	Grand Isle		
Roof-Mounted PVResidential6 Old Town LnRoof-Mounted PVResidential137 East Shore NRoof-Mounted PVResidential30 Cooper Bay LaneRoof-Mounted PVResidential9 Dodge TerraceRoof-Mounted PVResidential12 Adams Landing RdRoof-Mounted PVResidential283 East Shore NorthRoof-Mounted PVResidential122 Reynolds RdRoof-Mounted PVResidential8 Cedar Point RdRoof-Mounted PVResidential8 Cedar Point RdRoof-Mounted PVResidential6 Canamak WestRoof-Mounted PVResidential6 Canamak WestRoof-Mounted PVResidential1 Island Meadow LaneRoof-Mounted PVResidential1 Island Meadow LaneRoof-Mounted PVResidential1 Island Meadow Lane	Solar	Roof-Mounted PV	Residential	146 East Shore North	Grand Isle	1896	17.9
Roof-Mounted PV Residential 112 Pearl Street Roof-Mounted PV Residential 30 Cooper Bay Lane Roof-Mounted PV Residential 12 Adams Landing Rd Roof-Mounted PV Residential 12 Adams Landing Rd Roof-Mounted PV Residential 283 East Shore North Roof-Mounted PV Residential 122 Reynolds Rd Roof-Mounted PV Residential 8 Cedar Point Rd Roof-Mounted PV Residential 6 Canamak West Roof-Mounted PV Residential 6 Canamak West Roof-Mounted PV Residential 1 Island Meadow Lane Roof-Mounted PV Residential 1 Island Meadow Lane	Solar	Roof-Mounted PV	Residential	6 Old Town Ln	Grand Isle	2582	5.5
Roof-Mounted PV Residential 30 Cooper Bay Lane Roof-Mounted PV Residential 30 Cooper Bay Lane Roof-Mounted PV Residential 12 Adams Landing Rd Roof-Mounted PV Residential 12 Reynolds Rd Roof-Mounted PV Residential 122 Reynolds Rd Roof-Mounted PV Residential 32 Lovers Lane Roof-Mounted PV Residential 32 Lovers Lane Roof-Mounted PV Residential 6 Canamak West Roof-Mounted PV Residential 6 Canamak West Roof-Mounted PV Residential 1 Island Meadow Lane Roof-Mounted PV Residential 1 Island Meadow Lane	Solar	Roof-Mounted PV	Residential	137 East Shore N	Grand Isle	2100	6.1
Roof-Mounted PVResidential30 Cooper Bay LaneRoof-Mounted PVResidential9 Dodge TerraceRoof-Mounted PVResidential12 Adams Landing RdRoof-Mounted PVResidential283 East Shore NorthRoof-Mounted PVResidential122 Reynolds RdRoof-Mounted PVResidential8 Cedar Point RdRoof-Mounted PVResidential6 Canamak WestRoof-Mounted PVResidential6 Canamak WestRoof-Mounted PVResidential11 Island Meadow LaneRoof-Mounted PVResidential1 Island Meadow Lane	Solar	Roof-Mounted PV	Residential	112 Pearl Street	Grand Isle	1145	3.2
Roof-Mounted PVResidential9 Dodge TerraceRoof-Mounted PVResidential12 Adams Landing RdRoof-Mounted PVResidential283 East Shore NorthRoof-Mounted PVResidential122 Reynolds RdRoof-Mounted PVResidential8 Cedar Point RdRoof-Mounted PVResidential32 Lovers LaneRoof-Mounted PVResidential6 Canamak WestRoof-Mounted PVResidential6 Canamak WestRoof-Mounted PVResidential11 Island Meadow LaneRoof-Mounted PVResidential11 Island Meadow Lane	Solar	Roof-Mounted PV	Residential	30 Cooper Bay Lane	Grand Isle	4263	11
Roof-Mounted PVResidential12 Adams Landing RdRoof-Mounted PVResidential283 East Shore NorthRoof-Mounted PVResidential122 Reynolds RdRoof-Mounted PVResidential8 Cedar Point RdRoof-Mounted PVResidential32 Lovers LaneRoof-Mounted PVResidential6 Canamak WestRoof-Mounted PVResidential6 Canamak WestRoof-Mounted PVResidential11 Island Meadow LaneBoof-Mounted PVResidential11 Island Meadow Lane	Solar	Roof-Mounted PV	Residential	9 Dodge Terrace	Grand Isle	5071	7.6
Roof-Mounted PV Residential 10 Tebeau Terrace Roof-Mounted PV Residential 283 East Shore North Roof-Mounted PV Residential 32 Lovers Lane Roof-Mounted PV Residential 32 Lovers Lane Roof-Mounted PV Residential 6 Canamak West Roof-Mounted PV Residential 82 Adams School Rd Roof-Mounted PV Residential 11 Island Meadow Lane	Solar	Roof-Mounted PV	Residential	12 Adams Landing Rd	Grand Isle	2935	2
Roof-Mounted PVResidential283 East Shore NorthRoof-Mounted PVBusiness4 Island CirRoof-Mounted PVResidential8 Cedar Point RdRoof-Mounted PVResidential32 Lovers LaneRoof-Mounted PVResidential6 Canamak WestRoof-Mounted PVResidential82 Adams School RdRoof-Mounted PVResidential1 Island Meadow LanePoof Mounted PVResidential2 Mackenial Lane	Solar	Roof-Mounted PV	Residential	10 Tebeau Terrace	Grand Isle	2649	3.7
Roof-Mounted PVResidential122 Reynolds RdRoof-Mounted PVResidential8 Cedar Point RdRoof-Mounted PVResidential32 Lovers LaneRoof-Mounted PVResidential6 Canamak WestRoof-Mounted PVResidential82 Adams School RdRoof-Mounted PVResidential1 Island Meadow Lane	Solar	Roof-Mounted PV	Residential	283 East Shore North	Grand Isle	969	2.4
Roof-Mounted PVBusiness4 Island CirRoof-Mounted PVResidential32 Lovers LaneRoof-Mounted PVResidential6 Canamak WestRoof-Mounted PVResidential82 Adams School RdRoof-Mounted PVResidential1 Island Meadow LaneRoof-Mounted PVResidential2 Mackenial and Parallel and	Solar	Roof-Mounted PV	Residential	122 Reynolds Rd	Grand Isle		4.3
Roof-Mounted PVResidential8 Cedar Point RdRoof-Mounted PVResidential32 Lovers LaneRoof-Mounted PVResidential6 Canamak WestRoof-Mounted PVResidential82 Adams School RdRoof-Mounted PVResidential1 Island Meadow Lane	Solar	Roof-Mounted PV	Business	4 Island Cir	Grand Isle	2343	47.2
Roof-Mounted PVResidential32 Lovers LaneRoof-Mounted PVResidential6 Canamak WestRoof-Mounted PVResidential82 Adams School RdRoof-Mounted PVResidential1 Island Meadow Lane	Solar	Roof-Mounted PV	Residential	8 Cedar Point Rd	Grand Isle	3014	6.2
Roof-Mounted PV Residential 6 Canamak West Roof-Mounted PV Residential 1 Island Meadow Lane Roof-Mounted PV Residential 2 Mackenial 1 and Meadow Lane	Solar	Roof-Mounted PV	Residential	32 Lovers Lane	Grand Isle	5410	7.2
Roof-Mounted PV Residential 82 Adams School Rd Residential 1 Island Meadow Lane	Solar	Roof-Mounted PV	Residential	6 Canamak West	Grand Isle	5367	7
Roof-Mounted PV Residential 1 Island Meadow Lane	Solar	Roof-Mounted PV	Residential	82 Adams School Rd	Grand Isle	1511	7.8
Doof Mounted DV Decidential 2 Mackensia I and	Solar	Roof-Mounted PV	Residential	1 Island Meadow Lane	Grand Isle	3876	7.2
	Solar	Roof-Mounted PV	Residential	2 Mackenzie Lane	Grand Isle	2936	8.9
Solar Roof-Mounted PV Residential 33 East Shore N Gr	Solar	Roof-Mounted PV	Residential	33 East Shore N	Grand Isle	1856	8.9
Solar Roof-Mounted PV Residential 207 U.S. Route 2 Gr	Solar	Roof-Mounted PV	Residential	207 U.S. Route 2	Grand Isle	917	4.2

	A	All Generators in Municipality	Municipality			
Category	Sub - Category	Organization Type	Address	City	CPG Number	Capacity kW
Solar	Roof-Mounted PV	Residential	9 Canamak W	Grand Isle	2842	10.5
Solar	Roof-Mounted PV	Residential	39 Pearl St	Grand Isle	2836	4
Solar	Roof-Mounted PV	Residential	6 Pond Road	Grand Isle	7236	8.8
Solar	Roof-Mounted PV	Residential	37 Bell Hill Road	Grand Isle	6793	9
Solar	Roof-Mounted PV	Residential	9 Bell Hill Rd	Grand Isle	0029	4
Solar	Roof-Mounted PV	Residential	37 Moccasin Avenue	Grand Isle	7292	3.8
Solar	Roof-Mounted PV	Business	79 Allen Road	Grand Isle	7206	15
Solar	Roof-Mounted PV	Residential	258 West Shore Road	Grand Isle	7244	∞
Solar	Roof-Mounted PV	Residential	393 US Route 2	Grand Isle	6964	10
Solar	Roof-Mounted PV	Residential	8 Maynard Ct	Grand Isle	3075	5.6
Solar	Roof-Mounted PV	Residential	15 Allen Pond Road	South Hero	7257	
Wind	Small Wind	Residential	9 Dodge Terrace	Grand Isle	1944	10
Wind	Small Wind	Residential	283 East Shore North	Grand Isle	265	9.5
Wind	Small Wind	Farm	69 East Shore North	Grand Isle	226	2.5
Wind	Small Wind	Business	1268 Gordons Landing	Grand Isle	1221	100
Wind	Small Wind	Institution	54 West Shore Road	Grand Isle	406	9.5

Municipal Analysis & Targets - Highgate

The following is an explanation of the municipal energy data compiled by Northwest Regional Planning Commission (NRPC). The intent of the municipal energy data is to provide the municipalities with data required to ensure compliance with the requirements of Act 174 and "Enhanced Energy Planning" (24 V.S.A. 4352). The following tables contain data that estimates

current energy use and provides targets for future energy use across all sectors (transportation, heating, and electricity). It also sets targets for renewable energy generation within the municipality.

This data is meant to be a starting point for the municipality to begin planning its energy future and to talk about the changes that may need to occur within the municipality to ensure that local, regional and state energy goals are met. This includes the State of Vermont's goal to have 90% of all energy demand be met from renewable sources by 2050.

Figure 1 - Data Sources

ACS - American Community Survey
DOL -Vermont Department of Labor
DPS - Vermont Department of Public Service
EIA - Energy Information Administration
EVT - Efficiency Vermont
LEAP - Long-Range Energy Alternatives Planning
VEIC - Vermont Energy Investment Corporation
VTrans - Vermont Agency of Transportation

Data Sources

Estimates of current energy use consist primarily of data available from the American Community Survey (ACS), the Vermont Agency of Transportation (VTrans), the Vermont Department of Labor (DOL), and the Vermont Department of Public Service (DPS). Targets for future energy use are reliant upon the Long-range Energy Alternatives Planning (LEAP) analysis for the region completed the Vermont Energy Investment Corporation (VEIC). Targets for future energy generation have come from the regional planning commission and DPS. For more information on LEAP, see the Northwest Regional Energy Plan (www.nrpcvt.com). Targets for both future energy use and energy generation have been generally developed using a "top down" method of disaggregating regional data to the municipal level.

It is possible to develop "bottom up" data. For those municipalities interested in that approach, please see the Department of Public Service's Analysis and Targets Guidance (http://publicservice.vermont.gov/content/act-174-recommendations-and-determination-standards).

Please remember that the targets established by LEAP represent only one way to achieve energy goals. There may several other similar pathways that a municipality may choose to take in order to meet the 90x50 goal.

Below is a worksheet by worksheet explanation of the Municipal Template spreadsheet:

1. Municipal Data Summary

The following tables summarize all data that is required to be in a municipal plan if the plan is to meet the "determination" standards established by the Vermont Department of Public Service.

Table 1A: Current Municipal Transportation Energy Use				
Transportation Data	Municipal Data			
Total # of Passenger Vehicles (ACS 2011-2015)	2,879			
Average Miles per Vehicle (Vtrans)	11,356			
Total Miles Traveled	32,693,924			
Realized MPG (2013 - VTrans 2015 Energy Profile)	18.6			
Total Gallons Use per Year	1,757,738			
Transportation BTUs (Billion)	212			
Average Cost per Gallon of Gasoline (RPC)	2.31			
Gasoline Cost per Year	4,060,374			

This table uses data from the American Community Survey (ACS) and Vermont Agency of Transportation (VTrans) to calculate current transportation energy use and energy costs in the municipality.

Tal	Table 1B: Current Municipal Residential Heating Energy Use							
Fuel Source	Municipal Households (ACS 2011-2015)	% of Municipal Households	Municipal Square Footage Heated	Municipal BTU (in Billions)				
Natural Gas	13	1.0%	24,752	1				
Propane	299	22.6%	540,432	32				
Electricity	19	1.4%	22,800	1				
Fuel Oil	741	56.0%	1,350,320	81				
Coal	0	0.0%	0	0				
Wood	223	16.8%	368,976	22				
Solar	0	0.0%	0	0				
Other	29	2.2%	55,216	3				
No Fuel	0	0.0%	0	0				
Total	1,324	100.0%	2,362,496	142				

This table displays data from the ACS that estimates current municipal residential heating energy use.

Table 1C: Current Municipal Commercial Energy Use							
	Commercial Establishments in Municipality (VT DOL)	Estimated Thermal Energy BTUs per Commercial Establishment (in Billions) (VDPS)	Estimated Thermal Energy BTUs by Commercial Establishments in Municipality (in Billions)				
Municipal Commercial Energy Use	32	0.725	23				

The table uses data available from the Vermont Department of Labor (VT DOL) and the Vermont Department of Public Service (DPS) to estimate current municipal commercial establishment energy use in the municipality.

Table 1D: Current Electricity Use				
Use Sector	Current Electricity Use			
Residential (kWh)	11,901,889			
Commercial and Industrial (kWh)	8,210,344			
Total (kWh)	20,112,232			

This table displays current electricity use within the municipality. This data is available from Efficiency Vermont (EVT).

Table 1E: Residential Thermal Efficiency Targets					
	2025	2035	2050		
"Residential - Increased Efficiency and Conservation (% of municipal households to be weatherized)"	5%	16%	78%		

This table displays targets for thermal efficiency of residential structures. The data is based on a methodology developed by DPS using data available from the regional Long-range Energy Alternatives Planning (LEAP) analysis and ACS. The data in this table represents the percentage of municipal households that will need to be weatherized in the target years. The target is cumulative.

Table 1F: Commercial Thermal Efficiency Target					
	2025	2035	2050		
"Commercial - Increased Efficiency and Conservation (% of commercial establishments to be weatherized)"	25%	25%	73%		

This table shows the same information as Table 1E, but sets a target for commercial thermal efficiency and weatherization. Information from the VT DOL is required to complete this target. The target is cumulative.

Table 1G: Thermal Fuel Switching (Residential and Commercial) – Wood Systems

	2025	2035	2050
New Efficient Wood Heat Systems (in units)	5	12	55

This table provides a target for new wood heating systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 1H: Thermal Fuel Switching (Residential and Commercial) – Heat Pumps

	2025	2035	2050
New Heat Pumps (in units)	136	325	641

This table provides a target for new heat pump systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 11: Electricity Efficiency Targets

	2025	2035	2050
Increase Efficiency and Conservation (BTUs)	25.2%	48.3%	100.7%

Data in this table displays a target for increased electricity efficiency and conservation during the target years. This target will be met through conversions to high efficiency appliances, electric heat pumps, and electric light-duty vehicles. These targets were developed using regional LEAP analysis. The target is cumulative.

Table 1J: Use of Renewables - Transportation

	2025	2035	2050
Renewable Energy Use - Transportation (BTUs)	6.2%	25.3%	87.8%

This data displays targets for the percentage of transportation energy use coming from renewable sources during each target year. This target will be met through conversions to electric light-duty vehicles and biodiesel heavy-duty vehicles. This data was developed using the LEAP analysis. The target is cumulative.

Table 1K: Use of Renewables - Heating			
	2025	2035	2050
Renewable Energy Use - Heating (BTUs)	46.4%	60.1%	88.1%

This data displays targets for the percentage of heating energy use coming from renewable sources during each target year. This target will be met through conversions to electric heat pumps and high efficiency wood heating systems. This data was developed using information from the LEAP analysis. The target is cumulative.

Table 1L: Use of Renewables - Electricity			
	2025	2035	2050
Renewable Energy Use - Electricity (MWh)	5,746.5	11,493.0	17,413.6

This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1Q. The target is cumulative.

Table 1M: Transportation Fuel Switching Targets – Electric Vehicles				
	2025	2035	2050	
Electric Vehicles	252	1,886	4,487	

This tables displays a target for switching from fossil fuel based vehicles (gasoline and diesel) to electric vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

Table 1N: Transportation Fuel Switching Targets - Biodiesel			
	2025	2035	2050
Biodiesel Vehicles	227	449	854

This tables displays a target for switching from fossil fuel based vehicles to biodiesel-powered vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

Table 10: Existing Renewable Generation				
Renewable Type	MW	MWh		
Solar	0.09	110.38		
Wind	0.00	0.00		
Hydro	9.40	32,937.60		
Biomass	0.00	0.00		
Other	0.00	0.00		
Total Existing Generation	9.49	33,047.98		

Table 10 shows existing renewable generation in the municipality, in MW and MWh, based on information available from the Vermont Department of Public Service.

Table 1P: Renewable Generation Potential				
Renewable Type	MW	MWh		
Rooftop Solar	1	1,820		
Ground-mounted Solar	1,196	1,467,293		
Wind	1,080	3,312,736		
Hydro	0	0		
Biomass and Methane	0	0		
Other	0	0		
Total Renewable Generation Potential	2,278	4,781,849		

Renewable generation potential is based on mapping completed by the regional planning commission that is based on the Municipal Determination Standards and associated guidance documents developed by DPS. The renewable generation potential is expressed in MW and MWh by the type of renewable resource (solar, wind, hydro, etc.).

Table 10: Renewable Generation Targets

	2025	2035	2050
Total Renewable Generation Target (in MWh)	5,746.48	11,492.96	17,413.58

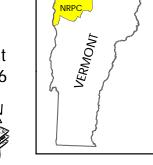
This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1L.

Table 1R: Sufficient Land?

	Y/N
Solar	Υ
Wind	Υ

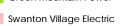
This table shows whether or not there is sufficient land in the municipality to meet the renewable generation targets based on the renewable generation potential in the municipality.

Substation

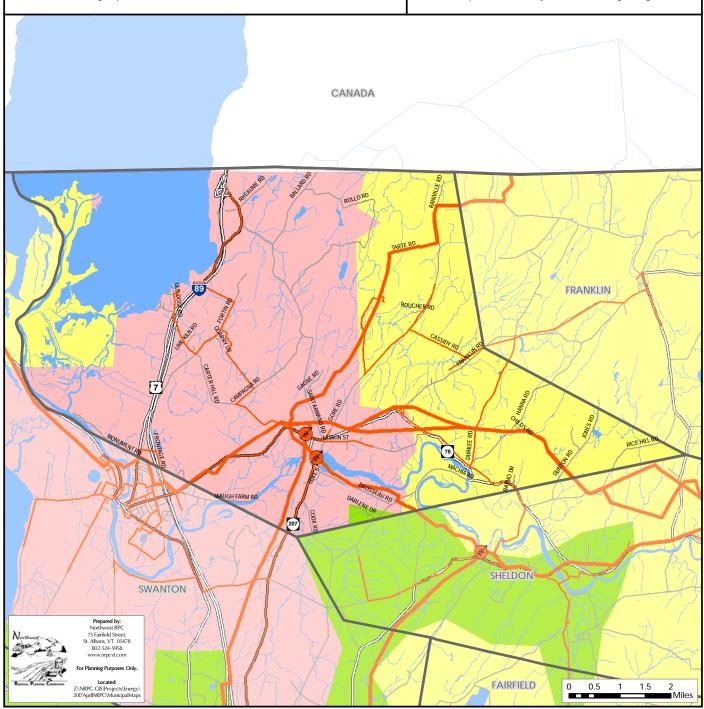

3 Phase Power Line

Transmission Line

Utility Service Areas


Highgate, Vermont Act 174 The Energy Development Improvement Act of 2016

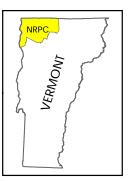
This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."


Legend **Utility Service Area Features**

Green Mountain Power

Vermont Electric Co-op

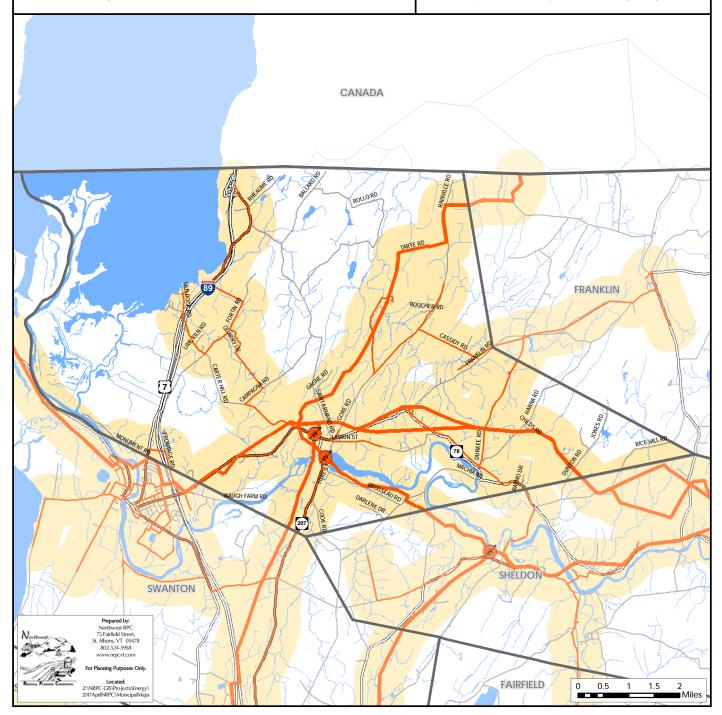
Enosburg Falls Electric



Transmission & 3 Phase **Power Infrastructure**

Highgate, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "sitting maps."


Legend

Substation

3 Phase Power Line

Transmission Line

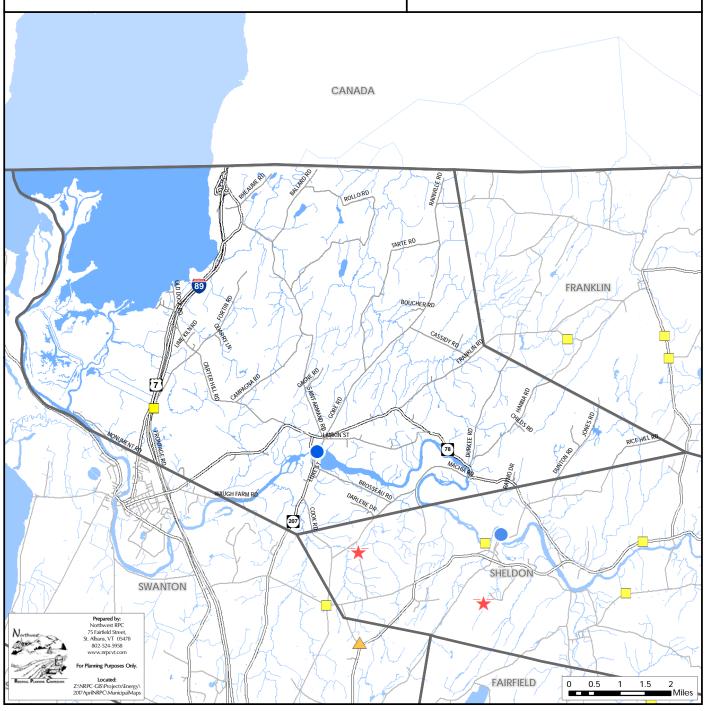
1/2 Mile Buffer (3 Phase Power Line & Transmission Line)

Existing Generation Facilities

Highgate, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

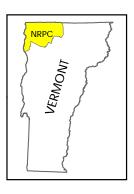

Biomass Facility

Hydro Facility

Solar Facility

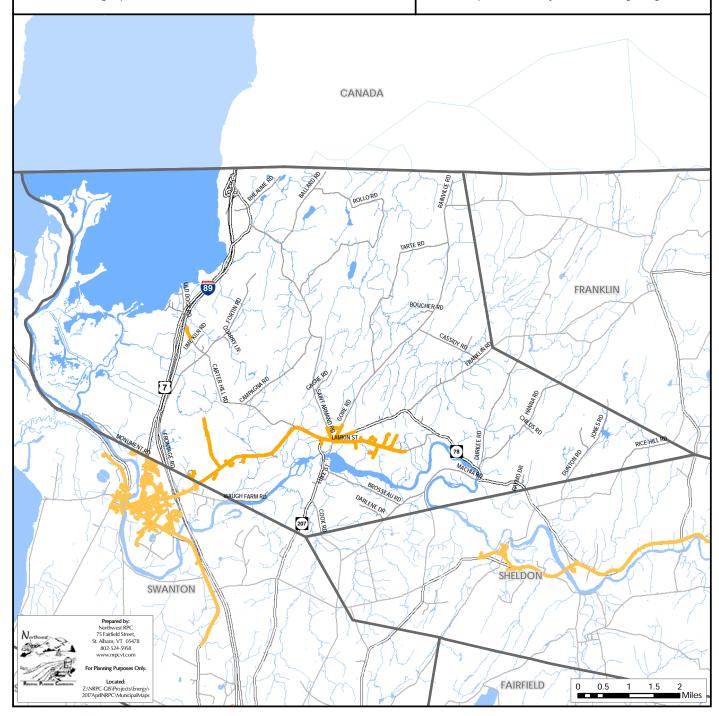
Note: Only generators 15kW are shown on the map. A full list of all generators is available.

Wind Facility



Natural Gas Lines

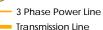
Highgate, Vermont Act 174 The Energy Development Improvement Act of 2016


This map and the corresponding data is intended to be used to inform energy planning efforts by municipallities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Natural Gas Line

Hydro


Highgate, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipallities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

✓ Substation

Designated Outstanding Resource Water

Known Constraint - Designated National Wild & Scenic River Possible Constraint -

Possible Constraint - RINAs

Possible Constraint - Stressed or Impaired Water

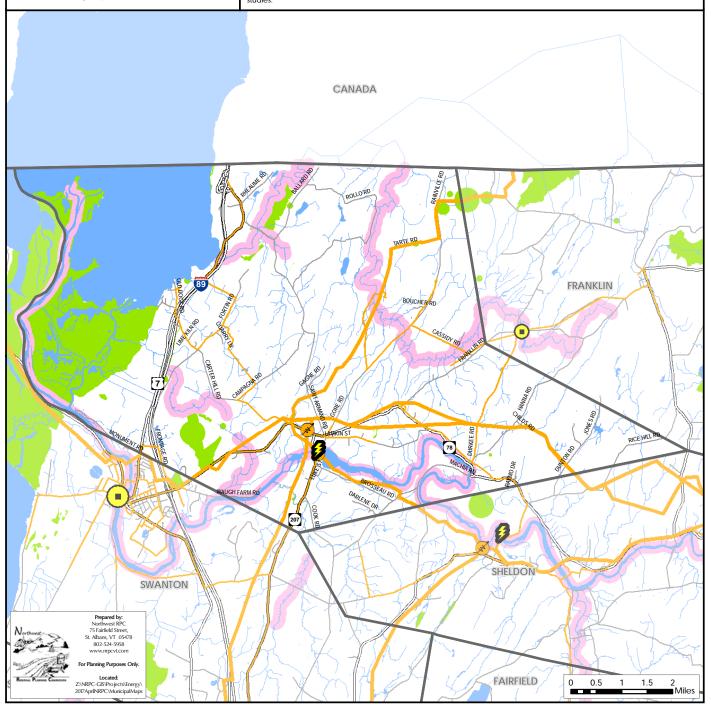
Operating Hydroelectric Facility

Dam not on National

Dam not on National Wild and Scenic River

Dam on National Wild and Scenic River

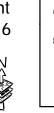
Potential Hydroelectric Facility


< 50 kW Capacity

> 50 kW Capacity

High Hazard with < 50 kW Capacity

High Hazard with > 50 kW Capacity


VERMONT

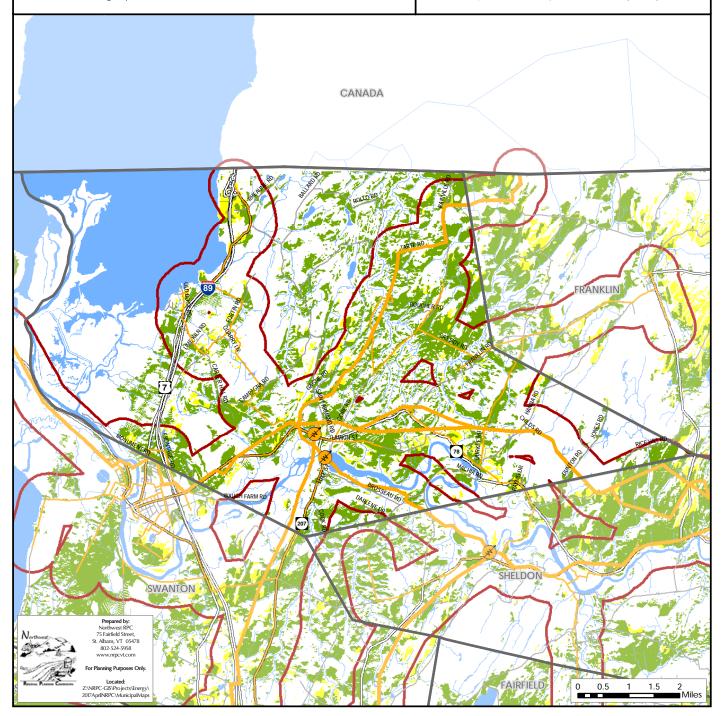
Solar

Highgate, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

📈 Substation


3 Phase Power Line

Transmission Line

1/2 Mile Buffer (3 Phase Power Line & Transmission Line)

Prime Solar/No Known Constraints

Base Solar/Possible Constraints

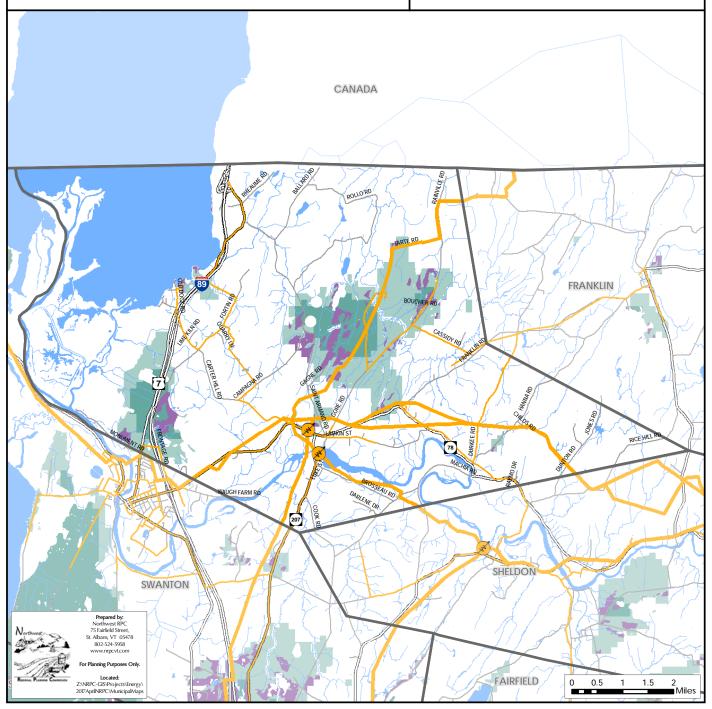
Wind

Highgate, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

💉 Substation


3 Phase Power Line Transmission Line

Prime Wind

Areas of high wind potential and no known constraints.

Base Wind Areas of high wind potential and a presence of possible constraints.

Darker areas have higher wind speeds. Darker areas have higher wind speeds.

Woody Biomass

Highgate, Vermont Act 174 The Energy Development Improvement Act of 2016

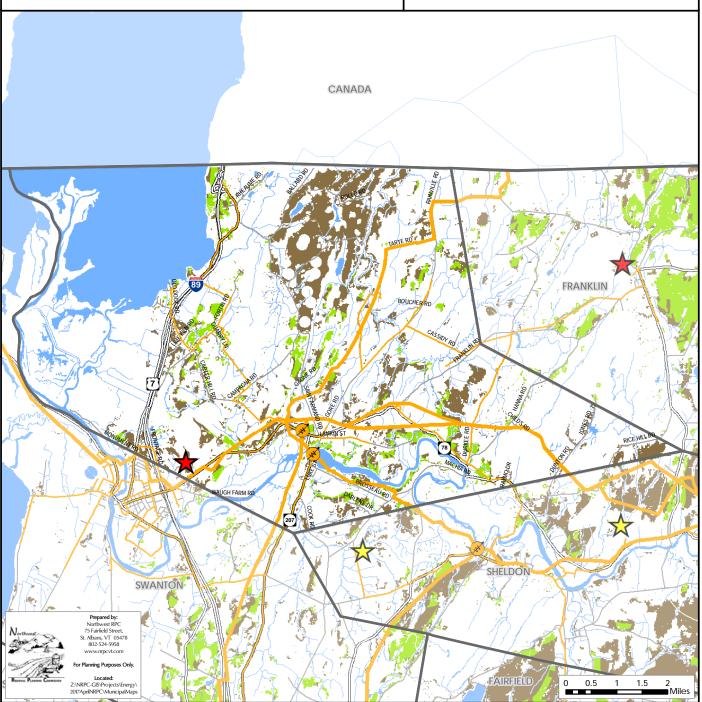
This map and the corresponding data is intended to be used to inform energy planning efforts by municipallities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Biomass System

Cow Power

Substation


3 Phase Power Line Transmission Line

Prime Woody Biomass/No Known Constraints

Base Woody Biomass/Possible Constraints

	All	All Generators in Municipality	Municipality			
Category	Sub - Category	Organization Type	Address	City	CPG Number	Capacity kW
Hydro	Hydropower	Business		Highgate		9400
Solar	Ground-mounted PV: Fixed Rack	Residential	1797 Gore Road	Highgate		10
Solar	Ground-mounted PV: Pole	Residential	73 Frontage Rd	Highgate	3772	11
Solar	Ground-mounted PV: Pole	Residential	3276 Rice Hill Rd	Highgate	3731	8.9
Solar	Ground-mounted PV: Pole	Residential	1862 Highgate Road	Highgate	16-0096	9
Solar	Ground-mounted PV: Fixed Rack	Residential	1400 Frontage Road	Highgate	16-0014	200
Solar	Roof-Mounted PV	Residential	548 Frontage Rd	Highgate	3844	6.38
Solar	Roof-Mounted PV	Residential	145 St. Armand Rd	Highgate	3583	4.6
Solar	Roof-Mounted PV	Residential	1759 Morey Rd	Highgate	6100	10.3
Solar	Roof-Mounted PV	Residential	53 Homestead Lane	Highgate	5361	2
Solar	Roof-Mounted PV	Residential	388 Ballard Road	Highgate		7.6
Solar	Roof-Mounted PV	Residential	7473 Vt Route 78	Highgate	5392	7
Solar	Roof-Mounted PV	Residential	3308 Gore Rd	Highgate	3799	9
Solar	Roof-Mounted PV	Residential	7735 VT RTE 78	Highgate	2169	9
Solar	Roof-Mounted PV	Residential	1427 VT Rt 78	Highgate	3803	3.8
Solar	Roof-Mounted PV	Residential	3948 VT-78	Highgate	7230	7.6

Municipal Analysis & Targets - Isle La Motte

The following is an explanation of the municipal energy data compiled by Northwest Regional Planning Commission (NRPC). The intent of the municipal energy data is to provide the municipalities with data required to ensure compliance with the requirements of Act 174 and "Enhanced Energy Planning" (24 V.S.A. 4352). The following tables contain data that estimates

current energy use and provides targets for future energy use across all sectors (transportation, heating, and electricity). It also sets targets for renewable energy generation within the municipality.

This data is meant to be a starting point for the municipality to begin planning its energy future and to talk about the changes that may need to occur within the municipality to ensure that local, regional and state energy goals are met. This includes the State of Vermont's goal to have 90% of all energy demand be met from renewable sources by 2050.

Figure 1 - Data Sources

ACS - American Community Survey
DOL -Vermont Department of Labor
DPS - Vermont Department of Public Service
EIA - Energy Information Administration
EVT - Efficiency Vermont
LEAP - Long-Range Energy Alternatives Planning
VEIC - Vermont Energy Investment Corporation
VTrans - Vermont Agency of Transportation

Data Sources

Estimates of current energy use consist primarily of data available from the American Community Survey (ACS), the Vermont Agency of Transportation (VTrans), the Vermont Department of Labor (DOL), and the Vermont Department of Public Service (DPS). Targets for future energy use are reliant upon the Long-range Energy Alternatives Planning (LEAP) analysis for the region completed the Vermont Energy Investment Corporation (VEIC). Targets for future energy generation have come from the regional planning commission and DPS. For more information on LEAP, see the Northwest Regional Energy Plan (www.nrpcvt.com). Targets for both future energy use and energy generation have been generally developed using a "top down" method of disaggregating regional data to the municipal level.

It is possible to develop "bottom up" data. For those municipalities interested in that approach, please see the Department of Public Service's Analysis and Targets Guidance (http://publicservice.vermont.gov/content/act-174-recommendations-and-determination-standards).

Please remember that the targets established by LEAP represent only one way to achieve energy goals. There may several other similar pathways that a municipality may choose to take in order to meet the 90x50 goal.

Below is a worksheet by worksheet explanation of the Municipal Template spreadsheet:

1. Municipal Data Summary

The following tables summarize all data that is required to be in a municipal plan if the plan is to meet the "determination" standards established by the Vermont Department of Public Service.

Table 1A: Current Municipal Transportation Energy Use			
Transportation Data	Municipal Data		
Total # of Passenger Vehicles (ACS 2011-2015)	419		
Average Miles per Vehicle (Vtrans)	11,356		
Total Miles Traveled	4,758,164		
Realized MPG (2013 - VTrans 2015 Energy Profile)	18.6		
Total Gallons Use per Year	255,815		
Transportation BTUs (Billion)	31		
Average Cost per Gallon of Gasoline (RPC)	2.31		
Gasoline Cost per Year	590,933		

This table uses data from the American Community Survey (ACS) and Vermont Agency of Transportation (VTrans) to calculate current transportation energy use and energy costs in the municipality.

Tal	ole 1B: Current M	unicipal Residen	Table 1B: Current Municipal Residential Heating Energy Use					
Fuel Source	Municipal Households (ACS 2011-2015)	% of Municipal Households	Municipal Square Footage Heated	Municipal BTU (in Billions)				
Natural Gas	3	1.4%	5,712	0				
Propane	49	22.5%	88,368	5				
Electricity	12	5.5%	20,736	1				
Fuel Oil	100	45.9%	190,400	11				
Coal	0	0.0%	0	0				
Wood	52	23.9%	86,336	5				
Solar	0	0.0%	0	0				
Other	0	0.0%	0	0				
No Fuel	2	0.9%	3,808	0				
Total	218	100.0%	395,360	24				

This table displays data from the ACS that estimates current municipal residential heating energy use.

Table 10	C: Current Munic	cipal Commercial En	ergy Use
	Commercial Establishments in Municipality (VT DOL)	Estimated Thermal Energy BTUs per Commercial Establishment (in Billions) (VDPS)	Estimated Thermal Energy BTUs by Commercial Establishments in Municipality (in Billions)
Municipal Commercial Energy Use	12	0.725	9

The table uses data available from the Vermont Department of Labor (VT DOL) and the Vermont Department of Public Service (DPS) to estimate current municipal commercial establishment energy use in the municipality.

Table 1D: Current Electricity Use				
Use Sector	Current Electricity Use			
Residential (kWh)	1,959,677			
Commercial and Industrial (kWh)	3,078,879			
Total (kWh)	5,038,555			

This table displays current electricity use within the municipality. This data is available from Efficiency Vermont (EVT).

Table 1E: Residential Thermal Efficiency Targets			
	2025	2035	2050
"Residential - Increased Efficiency and Conservation (% of municipal households to be weatherized)"	5%	16%	78%

This table displays targets for thermal efficiency of residential structures. The data is based on a methodology developed by DPS using data available from the regional Long-range Energy Alternatives Planning (LEAP) analysis and ACS. The data in this table represents the percentage of municipal households that will need to be weatherized in the target years. The target is cumulative.

Table 1F: Commercial Thermal E	ificiency To	arget	
	2025	2035	2050
"Commercial - Increased Efficiency and Conservation (% of commercial establishments to be weatherized)"	25%	25%	73%

This table shows the same information as Table 1E, but sets a target for commercial thermal efficiency and weatherization. Information from the VT DOL is required to complete this target. The target is cumulative.

Table 1G: Thermal Fuel Switching (Residential and Commercial) – Wood Systems

	2025	2035	2050
New Efficient Wood Heat Systems (in units)	-1	-2	1

This table provides a target for new wood heating systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 1H: Thermal Fuel Switching (Residential and Commercial) – Heat Pumps

	2025	2035	2050
New Heat Pumps (in units)	26	60	112

This table provides a target for new heat pump systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 11: Electricity Efficiency Targets

	2025	2035	2050
Increase Efficiency and Conservation (BTUs)	25.2%	48.3%	100.7%

Data in this table displays a target for increased electricity efficiency and conservation during the target years. This target will be met through conversions to high efficiency appliances, electric heat pumps, and electric light-duty vehicles. These targets were developed using regional LEAP analysis. The target is cumulative.

Table 1J: Use of Renewables - Transportation

	2025	2035	2050
Renewable Energy Use - Transportation (BTUs)	10.7%	33.1%	90.9%

This data displays targets for the percentage of transportation energy use coming from renewable sources during each target year. This target will be met through conversions to electric light-duty vehicles and biodiesel heavy-duty vehicles. This data was developed using the LEAP analysis. The target is cumulative.

Table 1K: Use of Renewables – Heating				
	2025	2035	2050	
Renewable Energy Use - Heating (BTUs)	45.0%	58.2%	86.1%	

This data displays targets for the percentage of heating energy use coming from renewable sources during each target year. This target will be met through conversions to electric heat pumps and high efficiency wood heating systems. This data was developed using information from the LEAP analysis. The target is cumulative.

Table 1L: Use of Renewables – Electricity			
	2025	2035	2050
Renewable Energy Use - Electricity (MWh)	1,969.0	3,938.0	5,966.6

This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1Q. The target is cumulative.

			_		
Table 1M: Trans	nortation Eucl (Switching T	Caracte	Eloctric \	Vohiclos
Table IIVI, ITalis	DUNANUM FUEL.	owitalii la l	iaiueis –	EIECUIC	venicies.

	2025	2035	2050
Electric Vehicles	37	275	653

This tables displays a target for switching from fossil fuel based vehicles (gasoline and diesel) to electric vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

	Transpartation	Fuel Cuitables	Targets - Biodiesel
TADIO INC	Hansoonallon	FIRE SWIICHING	HAMAIS - KIONIASAL
Table III.	Hansportation	I GOI SYVILOI III IG	raigets bloateser

	2025	2035	2050
Biodiesel Vehicles	77	153	296

This tables displays a target for switching from fossil fuel based vehicles to biodiesel-powered vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

Table 10: Existin	ng Renewable Genera	tion
Renewable Type	MW	MWh
Solar	0.08	98.11
Wind	0.00	0.00
Hydro	0.00	0.00
Biomass	0.00	0.00
Other	0.00	0.00
Total Existing Generation	0.08	98.11

Table 10 shows existing renewable generation in the municipality, in MW and MWh, based on information available from the Vermont Department of Public Service.

Table 1P: Renewable	Generation Potentia	ıl
Renewable Type	MW	MWh
Rooftop Solar	0	341
Ground-mounted Solar	204	250,504
Wind	272	833,883
Hydro	0	0
Biomass and Methane	0	0
Other	0	0
Total Renewable Generation Potential	477	1,084,728

Renewable generation potential is based on mapping completed by the regional planning commission that is based on the Municipal Determination Standards and associated guidance documents developed by DPS. The renewable generation potential is expressed in MW and MWh by the type of renewable resource (solar, wind, hydro, etc.).

Table 10: Renewable Generation Targets

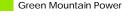
	2025	2035	2050
Total Renewable Generation Target (in MWh)	1,968.99	3,937.98	5,966.64

This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1L.

Table 1R: Sufficient Land?

	Y/N
Solar	Υ
Wind	Υ

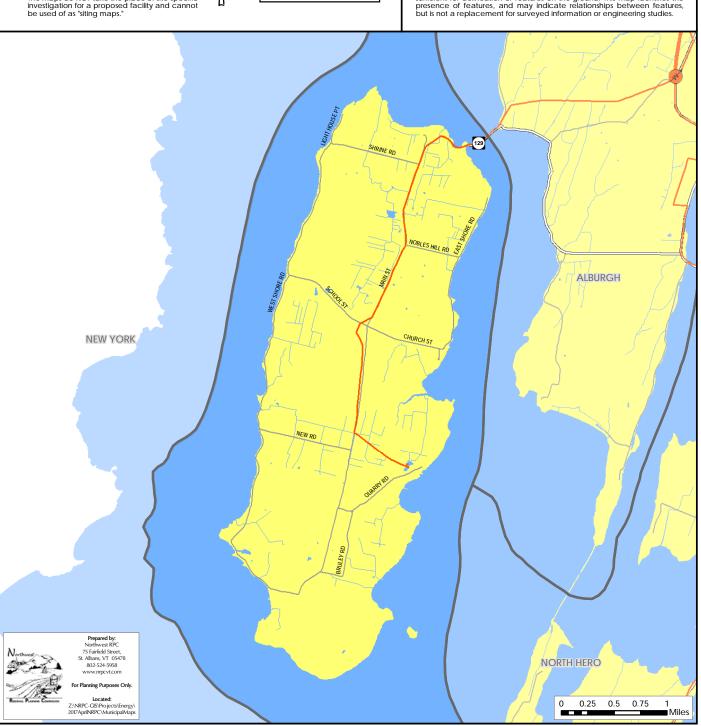
This table shows whether or not there is sufficient land in the municipality to meet the renewable generation targets based on the renewable generation potential in the municipality.


Utility Service Areas

Isle La Motte, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend **Utility Service Area Features**


3 Phase Power Line

Vermont Electric Co-op

Enosburg Falls Electric

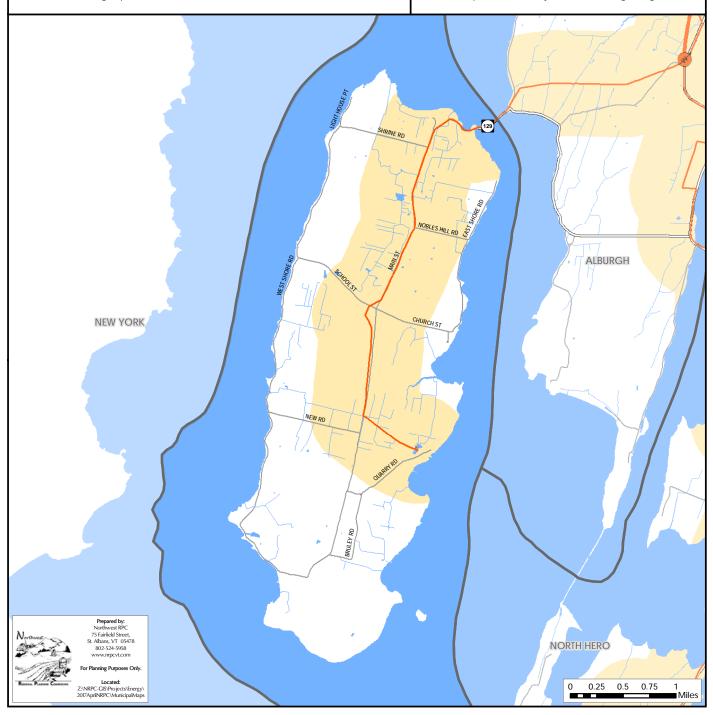
Transmission Line

Substation

Transmission & 3 Phase **Power Infrastructure**

Isle La Motte, Vermont Act 174 The Energy Development Improvement Act of 2016

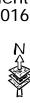
This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."


Legend

Substation

3 Phase Power Line

Transmission Line

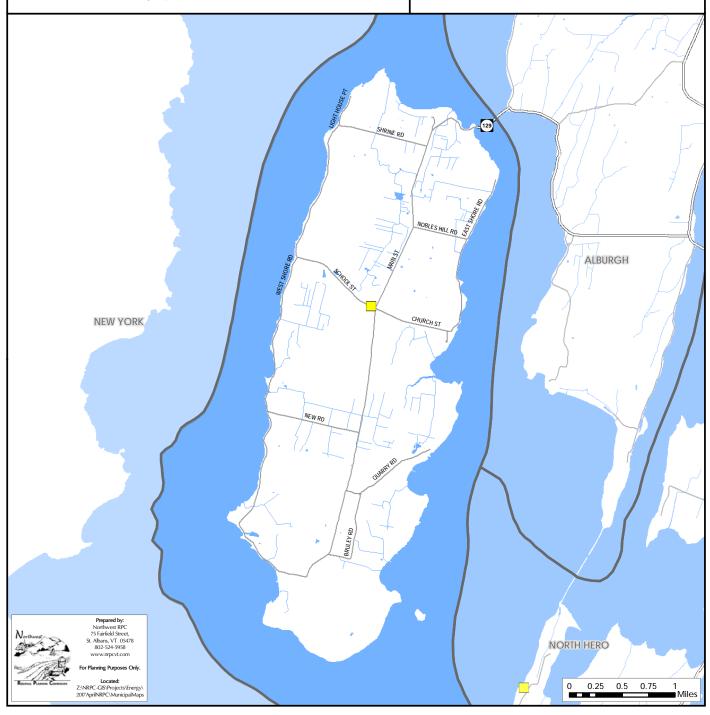

1/2 Mile Buffer (3 Phase Power Line & Transmission Line)

Existing Generation Facilities

Isle La Motte, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend


Biomass Facility

Hydro Facility

Solar Facility

Note: Only generators 15kW are shown on the map. A full list of all generators is available.

Wind Facility

Hydro

Isle La Motte, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipallities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Transmission Line

Legend

Substation

3 Phase Power Line

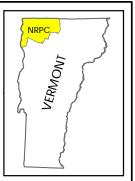
Designated Outstanding Resource Water

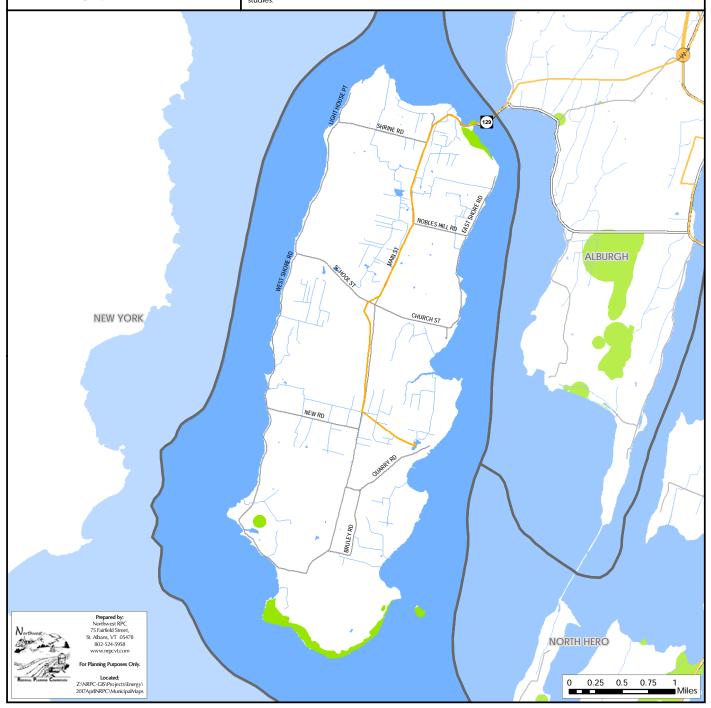
Known Constraint - Designated National Wild & Scenic River Possible Constraint -

Stressed or Impaired Water Possible Constraint - RINAs

Potential Hydroelectric Facility

< 50 kW Capacity


> 50 kW Capacity


High Hazard with < 50 kW Capacity High Hazard with > 50 kW Capacity

Operating Hydroelectric Facility

Dam not on National Wild and Scenic River

Dam on National Wild and Scenic River

Solar

Isle La Motte, Vermont Act 174

The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipallities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

💉 Substation

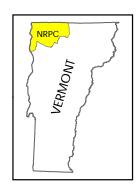
3 Phase Power Line

Transmission Line

1/2 Mile Buffer (3 Phase Power Line & Transmission Line)

Prime Solar/No Known Constraints

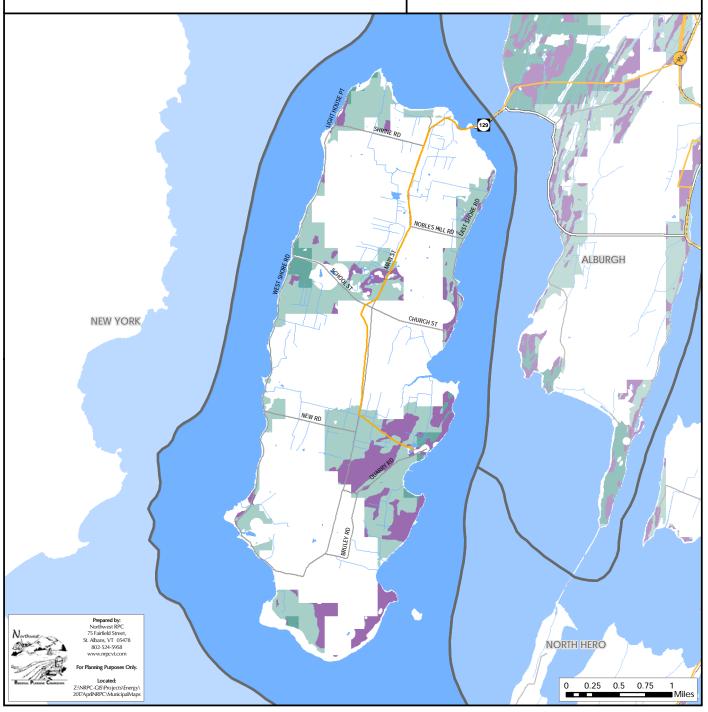
Base Solar/Possible Constraints



Wind

Isle La Motte, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."


Legend

Substation

3 Phase Power Line Transmission Line

Prime Wind Areas of high wind potential and no known constraints. Darker areas have higher wind speeds.

Base Wind Areas of high wind potential and a presence of possible constraints. Darker areas have higher wind speeds.

Woody Biomass

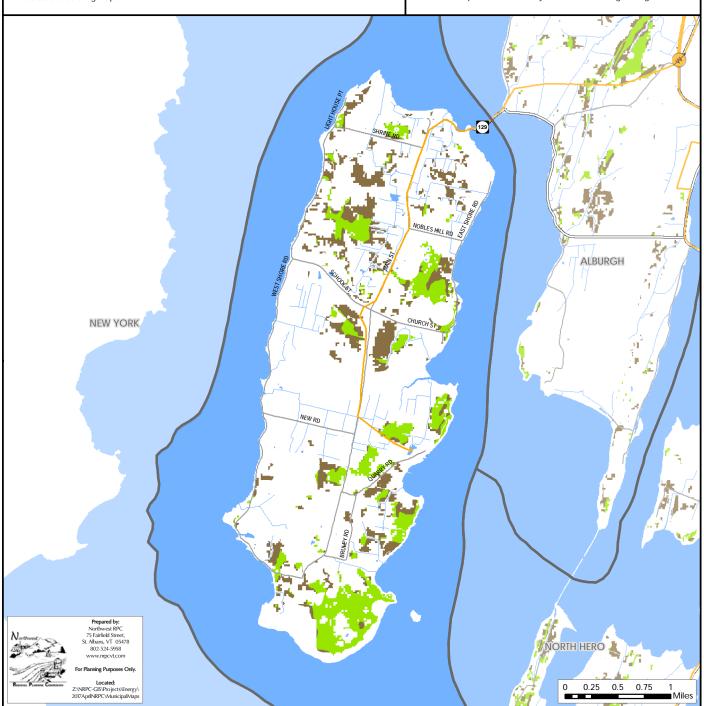
Isle La Motte, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Biomass System

Cow Power


Substation 3 Phase Power Line

Transmission Line

Prime Woody Biomass/No Known Constraints

Base Woody Biomass/Possible Constraints

Sources: VCGI

	All	l Generators ir	All Generators in Municipality			
Category	Sub - Category	Organization Type	Address	City	CPG Number	Capacity kW
Solar	Ground-mounted PV: Fixed Rack	Residential	383 Church St	Isle La Motte	7207	10
Solar	Hot Water	Residential	241 N Point Rd	Isle La Motte		
Solar	Roof-Mounted PV	Residential	598 New Rd	Isle La Motte	5644	10
Solar	Roof-Mounted PV	Institution	42 School St	Isle La Motte	2502	47.2
Solar	Roof-Mounted PV	Residential	1553 W Shore Rd	Isle La Motte	6205	4
Solar	Roof-Mounted PV	Residential	2430 Main Street	Isle La Motte	7274	2
Solar	Roof-Mounted PV	Residential	320 New Rd	Isle La Motte	7293	9

Municipal Analysis & Targets - Montgomery

The following is an explanation of the municipal energy data compiled by Northwest Regional Planning Commission (NRPC). The intent of the municipal energy data is to provide the municipalities with data required to ensure compliance with the requirements of Act 174 and "Enhanced Energy Planning" (24 V.S.A. 4352). The following tables contain data that estimates

current energy use and provides targets for future energy use across all sectors (transportation, heating, and electricity). It also sets targets for renewable energy generation within the municipality.

This data is meant to be a starting point for the municipality to begin planning its energy future and to talk about the changes that may need to occur within the municipality to ensure that local, regional and state energy goals are met. This includes the State of Vermont's goal to have 90% of all energy demand be met from renewable sources by 2050.

Figure 1 - Data Sources

ACS - American Community Survey
DOL -Vermont Department of Labor
DPS - Vermont Department of Public Service
EIA - Energy Information Administration
EVT - Efficiency Vermont
LEAP - Long-Range Energy Alternatives Planning
VEIC - Vermont Energy Investment Corporation
VTrans - Vermont Agency of Transportation

Data Sources

Estimates of current energy use consist primarily of data available from the American Community Survey (ACS), the Vermont Agency of Transportation (VTrans), the Vermont Department of Labor (DOL), and the Vermont Department of Public Service (DPS). Targets for future energy use are reliant upon the Long-range Energy Alternatives Planning (LEAP) analysis for the region completed the Vermont Energy Investment Corporation (VEIC). Targets for future energy generation have come from the regional planning commission and DPS. For more information on LEAP, see the Northwest Regional Energy Plan (www.nrpcvt.com). Targets for both future energy use and energy generation have been generally developed using a "top down" method of disaggregating regional data to the municipal level.

It is possible to develop "bottom up" data. For those municipalities interested in that approach, please see the Department of Public Service's Analysis and Targets Guidance (http://publicservice.vermont.gov/content/act-174-recommendations-and-determination-standards).

Please remember that the targets established by LEAP represent only one way to achieve energy goals. There may several other similar pathways that a municipality may choose to take in order to meet the 90x50 goal.

Below is a worksheet by worksheet explanation of the Municipal Template spreadsheet:

1. Municipal Data Summary

The following tables summarize all data that is required to be in a municipal plan if the plan is to meet the "determination" standards established by the Vermont Department of Public Service.

Table 1A: Current Municipal Transportation Energy Use			
Transportation Data	Municipal Data		
Total # of Passenger Vehicles (ACS 2011-2015)	857		
Average Miles per Vehicle (Vtrans)	11,356		
Total Miles Traveled	9,732,092		
Realized MPG (2013 - VTrans 2015 Energy Profile)	18.6		
Total Gallons Use per Year	523,231		
Transportation BTUs (Billion)	63		
Average Cost per Gallon of Gasoline (RPC)	2.31		
Gasoline Cost per Year	1,208,663		

This table uses data from the American Community Survey (ACS) and Vermont Agency of Transportation (VTrans) to calculate current transportation energy use and energy costs in the municipality.

Table 1B: Current Municipal Residential Heating Energy Use					
Fuel Source	Municipal Households (ACS 2011-2015)	% of Municipal Households	Municipal Square Footage Heated	Municipal BTU (in Billions)	
Natural Gas	0	0.0%	0	0	
Propane	93	20.8%	155,248	9	
Electricity	0	0.0%	0	0	
Fuel Oil	189	42.2%	308,464	19	
Coal	0	0.0%	0	0	
Wood	166	37.1%	299,872	18	
Solar	0	0.0%	0	0	
Other	0	0.0%	0	0	
		0.0.5	, and the second	ū	

This table displays data from the ACS that estimates current municipal residential heating energy use.

0.0%

100.0%

448

No Fuel

Total

763,584

0

46

Table 1C: Current Municipal Commercial Energy Use					
	Commercial Establishments in Municipality (VT DOL)	Estimated Thermal Energy BTUs per Commercial Establishment (in Billions) (VDPS)	Estimated Thermal Energy BTUs by Commercial Establishments in Municipality (in Billions)		
Municipal Commercial Energy Use	27	0.725	20		

The table uses data available from the Vermont Department of Labor (VT DOL) and the Vermont Department of Public Service (DPS) to estimate current municipal commercial establishment energy use in the municipality.

Table 1D: Current Electricity Use				
Use Sector	Current Electricity Use			
Residential (kWh)	4,027,225			
Commercial and Industrial (kWh)	6,927,477			
Total (kWh)	10,954,703			

This table displays current electricity use within the municipality. This data is available from Efficiency Vermont (EVT).

Table 1E: Residential Thermal Efficiency Targets			
	2025	2035	2050
"Residential - Increased Efficiency and Conservation (% of municipal households to be weatherized)"	5%	16%	78%

This table displays targets for thermal efficiency of residential structures. The data is based on a methodology developed by DPS using data available from the regional Long-range Energy Alternatives Planning (LEAP) analysis and ACS. The data in this table represents the percentage of municipal households that will need to be weatherized in the target years. The target is cumulative.

Table 1F: Commercial Thermal Efficiency Target				
	2025	2035	2050	
"Commercial - Increased Efficiency and Conservation (% of commercial establishments to be weatherized)"	25%	25%	73%	

This table shows the same information as Table 1E, but sets a target for commercial thermal efficiency and weatherization. Information from the VT DOL is required to complete this target. The target is cumulative.

Table 1G: Thermal Fuel Switching (Residential and Commercial) – Wood Systems

	2025	2035	2050
New Efficient Wood Heat Systems (in units)	-1	-5	3

This table provides a target for new wood heating systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 1H: Thermal Fuel Switching (Residential and Commercial) – Heat Pumps

	2025	2035	2050
New Heat Pumps (in units)	54	123	230

This table provides a target for new heat pump systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 11: Electricity Efficiency Targets

	2025	2035	2050
Increase Efficiency and Conservation (BTUs)	25.2%	48.3%	100.7%

Data in this table displays a target for increased electricity efficiency and conservation during the target years. This target will be met through conversions to high efficiency appliances, electric heat pumps, and electric light-duty vehicles. These targets were developed using regional LEAP analysis. The target is cumulative.

Table 1J: Use of Renewables - Transportation

	2025	2035	2050
Renewable Energy Use - Transportation (BTUs)	11.0%	33.6%	91.1%

This data displays targets for the percentage of transportation energy use coming from renewable sources during each target year. This target will be met through conversions to electric light-duty vehicles and biodiesel heavy-duty vehicles. This data was developed using the LEAP analysis. The target is cumulative.

Table 1K: Use of Renewables - Heating				
2025 2035 2050				
Renewable Energy Use - Heating (BTUs)	44.8%	58.0%	85.8%	

This data displays targets for the percentage of heating energy use coming from renewable sources during each target year. This target will be met through conversions to electric heat pumps and high efficiency wood heating systems. This data was developed using information from the LEAP analysis. The target is cumulative.

Table 1L: Use of Renewables – Electricity				
2025 2035 2050				
Renewable Energy Use - Electricity (MWh)	3,073.3	6,146.5	9,312.9	

This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1Q. The target is cumulative.

Table 1M: Transportation Fuel Switching Ta	argets – Ele	ectric Vehic	cles
	2025	2035	2050
Electric Vehicles	75	562	1336

This tables displays a target for switching from fossil fuel based vehicles (gasoline and diesel) to electric vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

Table 1N: Transportation Fuel Switching Targets - Biodiesel				
	2025	2035	2050	
Biodiesel Vehicles	165	330	638	

This tables displays a target for switching from fossil fuel based vehicles to biodiesel-powered vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

Table 10: Existing Renewable Generation				
Renewable Type	MW	MWh		
Solar	0.07	85.85		
Wind	0.00	0.00		
Hydro	0.00	0.00		
Biomass	0.00	0.00		
Other	0.00	0.00		
Total Existing Generation	0.07	85.85		

Table 10 shows existing renewable generation in the municipality, in MW and MWh, based on information available from the Vermont Department of Public Service.

Table 1P: Renewable Generation Potential				
Renewable Type	MW	MWh		
Rooftop Solar	1	715		
Ground-mounted Solar	231	282,738		
Wind	38	117,451		
Hydro	0	0		
Biomass and Methane	0	0		
Other	0	0		
Total Renewable Generation Potential	269	400,904		

Renewable generation potential is based on mapping completed by the regional planning commission that is based on the Municipal Determination Standards and associated guidance documents developed by DPS. The renewable generation potential is expressed in MW and MWh by the type of renewable resource (solar, wind, hydro, etc.).

Table 10: Renewable Generation Targets

	2025	2035	2050
Total Renewable Generation Target (in MWh)	3,073.25	6,146.50	9,312.88

This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1L.

Table 1R: Sufficient Land?

	Y/N
Solar	Υ
Wind	Υ

This table shows whether or not there is sufficient land in the municipality to meet the renewable generation targets based on the renewable generation potential in the municipality.

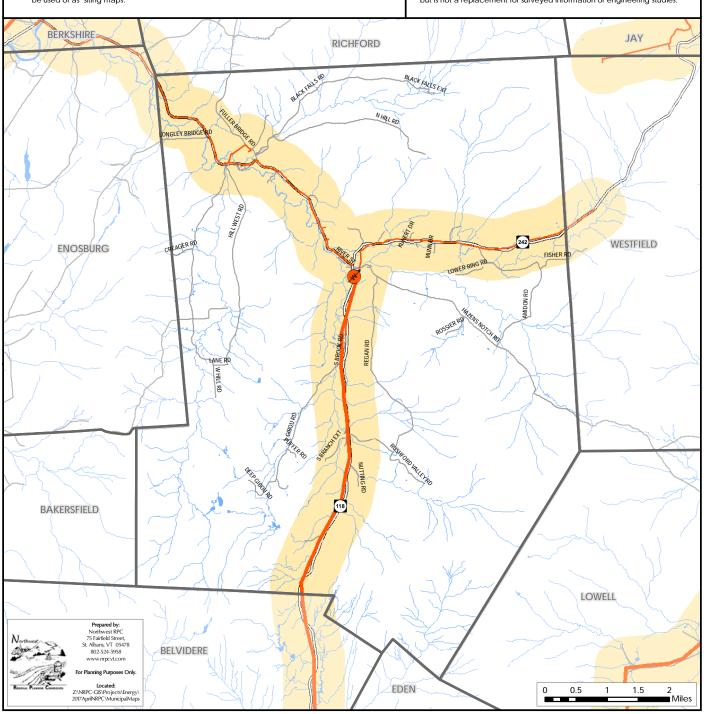
Utility Service Areas Legend **Utility Service Area Features** NRPC Montgomery, Vermont Substation Green Mountain Power Act 174 Swanton Village Electric 3 Phase Power Line The Energy Development Vermont Electric Co-op Transmission Line Improvement Act of 2016 Enosburg Falls Electric This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "sitting maps." Sources: VCGI Disclaimer: The accuracy of information presented is determined by its sources. Errors and omissions may exist. The Northwest RPC is not responsible for these. Questions of on-the-ground location can be resolved by site inspections and/or surveys by a registered surveyor. This map is not sufficient for delineation of features on-the-ground. This map identifies the presence of features, and may indicate relationships between features, but is not a replacement for surveyed information or engineering studies. BERKSHIRE JAY RICHFORD BLACK FALLS EXT N HILL RD WESTFIELD **ENOSBURG** BAKERSFIELD LOWELL Prepared by: Northwest RPC '5 Fairfield Street, Albans, VT 05478 802-524-5958 vww.nrpcvt.com BELVIDERE Located: Z:\NRPC-GIS\Projects\Energy\ 2017AprilNRPC\MunicipalMaps **EDEN** 0.5

-Miles

Transmission & 3 Phase **Power Infrastructure**

Montgomery, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "sitting maps."

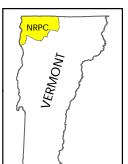

Legend

Substation

3 Phase Power Line

Transmission Line

1/2 Mile Buffer (3 Phase Power Line & Transmission Line)

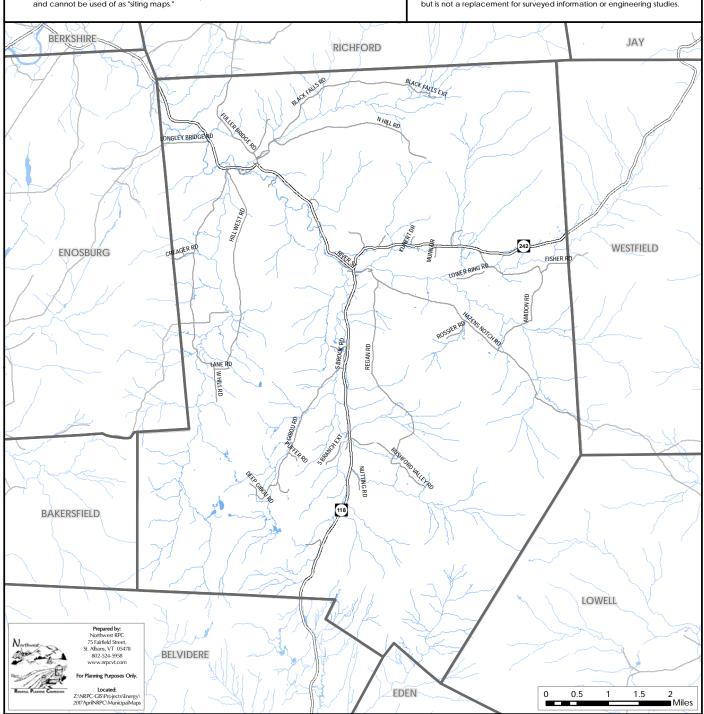


Existing Generation Facilities

Montgomery, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

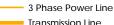
Legend


Biomass Facility

Note: Only generators 15kW are shown on the map. A full list of all generators is available.

Wind Facility

Solar Facility


Hydro

Montgomery, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Substation

Designated Outstanding Resource Water

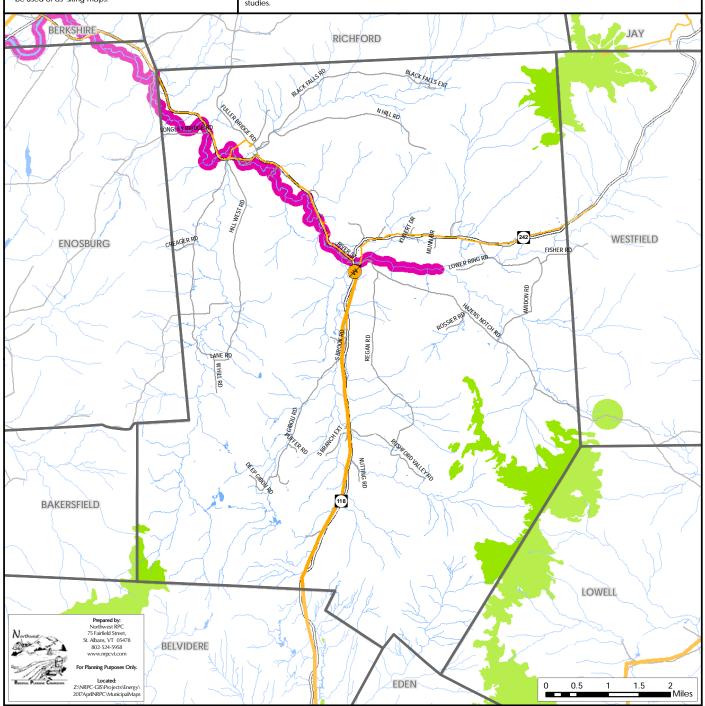
Known Constraint - Designated National Wild & Scenic River Possible Constraint -Stressed or Impaired Water

Possible Constraint - RINAs

Potential Hydroelectric Facility

< 50 kW Capacity

> 50 kW Capacity High Hazard with < 50 kW Capacity


High Hazard with > 50 kW Capacity

Operating Hydroelectric Facility

Dam not on National Wild and Scenic River

Dam on National Wild and Scenic River

Wind Legend Substation NRPC_ Montgomery, Vermont 3 Phase Power Line Transmission Line Act 174 Prime Wind Base Wind The Energy Development Areas of high wind potential and no known constraints. Areas of high wind potential and a presence of possible constraints. Improvement Act of 2016 Darker areas have higher wind speeds. Darker areas have higher wind speeds. This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps." Sources: VCGI Disclaimer: The accuracy of information presented is determined by its sources. Errors and omissions may exist. The Northwest RPC is not responsible for these. Questions of on-the-ground location can be resolved by site inspections and/or surveys by a registered surveyor. This map is not sufficient for delineation of features on-the-ground. This map identifies the presence of features, and may indicate relationships between features, but is not a replacement for surveyed information or engineering studies. BERKSHIRE JAY RICHFORD BLACK FALLS EXT N HILL RD NGLEY BRIDGE WESTFIELD **ENOSBURG** WHILL RD BAKERSFIELD LOWELL BELVIDERE Planning Purposes Only Located: Z:\NRPC-GIS\Projects\Energy' 2017AprilNRPC\MunicipalMap: EDEN 0.5 Miles

Northwest Regional Energy Plan 2017 Woody Biomass Legend Biomass System NRPC, Montgomery, Vermont Cow Power Act 174 Substation The Energy Development 3 Phase Power Line Transmission Line Improvement Act of 2016 Prime Woody Biomass/No Known Constraints Base Woody Biomass/Possible Constraints This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as 'stiling maps." Sources: VCGI Disclaimer: The accuracy of information presented is determined by its sources. Errors and omissions may exist. The Northwest RPC is not responsible for these. Questions of on-the-ground location can be resolved by site inspections and/or surveys by a registered surveyor. This map is not sufficient for delineation of features on-the-ground. This map identifies the presence of features, and may indicate relationships between features, but is not a replacement for surveyed information or engineering studies. be used of as "siting maps." BERKSHIRE JAY RICHFORD M.D WESTFIELD **ENOSBURG**

	م	II Generators	All Generators in Municipality			
Category	Sub - Category	Organization Type	Address	City	CPG Number	Capacity kW
Solar	Ground-mounted PV: Fixed Rack	Residential	219 Rossier Rd	Montgomery	2611	8.2
Solar	Ground-mounted PV: Fixed Rack	Residential	2812 Black Falls Rd	Montgomery	372	1.3
Solar	Ground-mounted PV: Pole	Residential	2637 South Main St	Montgomery		7.6
Solar	Ground-mounted PV: Pole	Residential	3592 Hazens Notch Rd	Montgomery	3801	6
Solar	Ground-mounted PV: Tracker	Residential	854 Rushford Valley Rd	Montgomery		12
Solar	Roof-Mounted PV	Residential	1325 Regan Rd	Montgomery	3248	4
Solar	Roof-Mounted PV	Residential	1427 Regan Rd	Montgomery	812	3.2
Solar	Roof-Mounted PV	Residential	169 Fuller St	Montgomery	3709	4.6
Solar	Roof-Mounted PV	Residential	3376 Mountain Rd	Montgomery	7170	Ø
Solar	Roof-Mounted PV	Residential	2534 Hill West Rd	Montgomery	6981	2
Solar	Roof-Mounted PV	Residential	2060 N Main Street	Montgomery	7291	9

Municipal Analysis & Targets - North Hero

The following is an explanation of the municipal energy data compiled by Northwest Regional Planning Commission (NRPC). The intent of the municipal energy data is to provide the municipalities with data required to ensure compliance with the requirements of Act 174 and "Enhanced Energy Planning" (24 V.S.A. 4352). The following tables contain data that estimates

current energy use and provides targets for future energy use across all sectors (transportation, heating, and electricity). It also sets targets for renewable energy generation within the municipality.

This data is meant to be a starting point for the municipality to begin planning its energy future and to talk about the changes that may need to occur within the municipality to ensure that local, regional and state energy goals are met. This includes the State of Vermont's goal to have 90% of all energy demand be met from renewable sources by 2050.

Figure 1 - Data Sources

ACS - American Community Survey
DOL -Vermont Department of Labor
DPS - Vermont Department of Public Service
EIA - Energy Information Administration
EVT - Efficiency Vermont
LEAP - Long-Range Energy Alternatives Planning
VEIC - Vermont Energy Investment Corporation
VTrans - Vermont Agency of Transportation

Data Sources

Estimates of current energy use consist primarily of data available from the American Community Survey (ACS), the Vermont Agency of Transportation (VTrans), the Vermont Department of Labor (DOL), and the Vermont Department of Public Service (DPS). Targets for future energy use are reliant upon the Long-range Energy Alternatives Planning (LEAP) analysis for the region completed the Vermont Energy Investment Corporation (VEIC). Targets for future energy generation have come from the regional planning commission and DPS. For more information on LEAP, see the Northwest Regional Energy Plan (www.nrpcvt.com). Targets for both future energy use and energy generation have been generally developed using a "top down" method of disaggregating regional data to the municipal level.

It is possible to develop "bottom up" data. For those municipalities interested in that approach, please see the Department of Public Service's Analysis and Targets Guidance (http://publicservice.vermont.gov/content/act-174-recommendations-and-determination-standards).

Please remember that the targets established by LEAP represent only one way to achieve energy goals. There may several other similar pathways that a municipality may choose to take in order to meet the 90x50 goal.

Below is a worksheet by worksheet explanation of the Municipal Template spreadsheet:

1. Municipal Data Summary

The following tables summarize all data that is required to be in a municipal plan if the plan is to meet the "determination" standards established by the Vermont Department of Public Service.

Table 1A: Current Municipal Transportation Energy Use		
Transportation Data	Municipal Data	
Total # of Passenger Vehicles (ACS 2011-2015)	816	
Average Miles per Vehicle (Vtrans)	11,356	
Total Miles Traveled	9,266,496	
Realized MPG (2013 - VTrans 2015 Energy Profile)	18.6	
Total Gallons Use per Year	498,199	
Transportation BTUs (Billion)	60	
Average Cost per Gallon of Gasoline (RPC)	2.31	
Gasoline Cost per Year	1,150,839	

This table uses data from the American Community Survey (ACS) and Vermont Agency of Transportation (VTrans) to calculate current transportation energy use and energy costs in the municipality.

Table 1B: Current Municipal Residential Heating Energy Use				
Fuel Source	Municipal Households (ACS 2011-2015)	% of Municipal Households	Municipal Square Footage Heated	Municipal BTU (in Billions)
Natural Gas	4	1.0%	7,616	0
Propane	115	27.8%	206,992	12
Electricity	6	1.4%	11,424	1
Fuel Oil	218	52.7%	398,880	24
Coal	2	0.5%	3,808	0
Wood	64	15.5%	119,744	7
Solar	0	0.0%	0	0
Other	5	1.2%	9,520	1
No Fuel	0	0.0%	0	0
Total	414	100.0%	757,984	45

This table displays data from the ACS that estimates current municipal residential heating energy use.

Table 10	C: Current Munic	cipal Commercial En	ergy Use
	Commercial Establishments in Municipality (VT DOL)	Estimated Thermal Energy BTUs per Commercial Establishment (in Billions) (VDPS)	Estimated Thermal Energy BTUs by Commercial Establishments in Municipality (in Billions)
Municipal Commercial Energy Use	29	0.725	21

The table uses data available from the Vermont Department of Labor (VT DOL) and the Vermont Department of Public Service (DPS) to estimate current municipal commercial establishment energy use in the municipality.

Table 1D: Current Electricity Use			
Use Sector	Current Electricity Use		
Residential (kWh)	3,721,588		
Commercial and Industrial (kWh)	7,440,624		
Total (kWh)	11,162,212		

This table displays current electricity use within the municipality. This data is available from Efficiency Vermont (EVT).

Table 1E: Residential Thermal Efficiency Targets			
	2025	2035	2050
"Residential - Increased Efficiency and Conservation (% of municipal households to be weatherized)"	5%	16%	78%

This table displays targets for thermal efficiency of residential structures. The data is based on a methodology developed by DPS using data available from the regional Long-range Energy Alternatives Planning (LEAP) analysis and ACS. The data in this table represents the percentage of municipal households that will need to be weatherized in the target years. The target is cumulative.

Table 1F: Commercial Thermal Efficiency Target				
	2025	2035	2050	
"Commercial - Increased Efficiency and Conservation (% of commercial establishments to be weatherized)"	25%	25%	73%	

This table shows the same information as Table 1E, but sets a target for commercial thermal efficiency and weatherization. Information from the VT DOL is required to complete this target. The target is cumulative.

Table 1G: Thermal Fuel Switching (Residential and Commercial) – Wood Systems

	2025	2035	2050
New Efficient Wood Heat Systems (in units)	-1	-4	3

This table provides a target for new wood heating systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 1H: Thermal Fuel Switching (Residential and Commercial) – Heat Pumps

	2025	2035	2050
New Heat Pumps (in units)	50	114	212

This table provides a target for new heat pump systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 11: Electricity Efficiency Targets

	2025	2035	2050
Increase Efficiency and Conservation (BTUs)	25.2%	48.3%	100.7%

Data in this table displays a target for increased electricity efficiency and conservation during the target years. This target will be met through conversions to high efficiency appliances, electric heat pumps, and electric light-duty vehicles. These targets were developed using regional LEAP analysis. The target is cumulative.

Table 1J: Use of Renewables - Transportation

	2025	2035	2050
Renewable Energy Use - Transportation (BTUs)	10.8%	33.3%	91.0%

This data displays targets for the percentage of transportation energy use coming from renewable sources during each target year. This target will be met through conversions to electric light-duty vehicles and biodiesel heavy-duty vehicles. This data was developed using the LEAP analysis. The target is cumulative.

Table 1K: Use of Renewables – Heating				
2025 2035 2050				
Renewable Energy Use - Heating (BTUs)	44.5%	57.5%	85.3%	

This data displays targets for the percentage of heating energy use coming from renewable sources during each target year. This target will be met through conversions to electric heat pumps and high efficiency wood heating systems. This data was developed using information from the LEAP analysis. The target is cumulative.

Table 1L: Use of Renewables – Electricity				
2025 2035 2050				
Renewable Energy Use - Electricity (MWh)	2,316.8	4,633.6	7,020.5	

This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1Q. The target is cumulative.

Table 1M: Transportation Fuel Switchi	ng Targets - Electric Vehicles
---------------------------------------	--------------------------------

	2025	2035	2050
Electric Vehicles	71	535	1272

This tables displays a target for switching from fossil fuel based vehicles (gasoline and diesel) to electric vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

Table 1N: Trans	portation Fue	I Switchina	Targets -	Biodiesel
		$\boldsymbol{\mathcal{J}}$	\mathcal{L}	

	2025	2035	2050
Biodiesel Vehicles	153	306	590

This tables displays a target for switching from fossil fuel based vehicles to biodiesel-powered vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

Table 10: Existing Renewable Generation				
Renewable Type	MW	MWh		
Solar	0.10	122.64		
Wind	0.00	0.00		
Hydro	0.00	0.00		
Biomass	0.00	0.00		
Other	0.00	0.00		
Total Existing Generation	0.10	122.64		

Table 10 shows existing renewable generation in the municipality, in MW and MWh, based on information available from the Vermont Department of Public Service.

Table 1P: Renewable	Generation Potentia	ıl
Renewable Type	MW	MWh
Rooftop Solar	1	686
Ground-mounted Solar	397	486,825
Wind	602	1,845,165
Hydro	0.001	4
Biomass and Methane	0	0
Other	0	0
Total Renewable Generation Potential	999	2,332,679

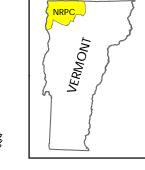
Renewable generation potential is based on mapping completed by the regional planning commission that is based on the Municipal Determination Standards and associated guidance documents developed by DPS. The renewable generation potential is expressed in MW and MWh by the type of renewable resource (solar, wind, hydro, etc.).

Table 10: Renewable Generation Targets

	2025	2035	2050
Total Renewable Generation Target (in MWh)	2,316.78	4,633.56	7,020.54

This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1L.

Table 1R: Sufficient Land?


	Y/N
Solar	Υ
Wind	Υ

This table shows whether or not there is sufficient land in the municipality to meet the renewable generation targets based on the renewable generation potential in the municipality.

Utility Service Areas

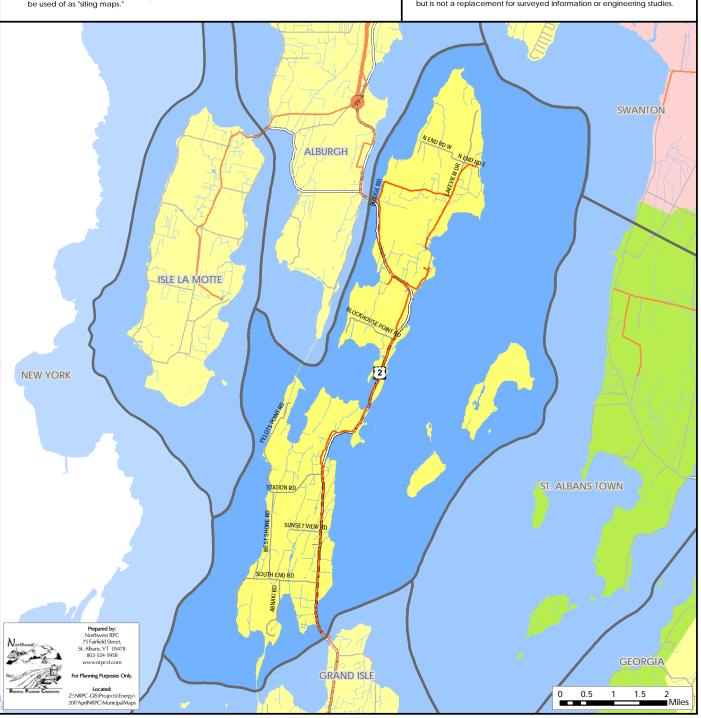
North Hero, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipallities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Utility Service Area Features

Green Mountain Power


Vermont Electric Co-op

Swanton Village Electric

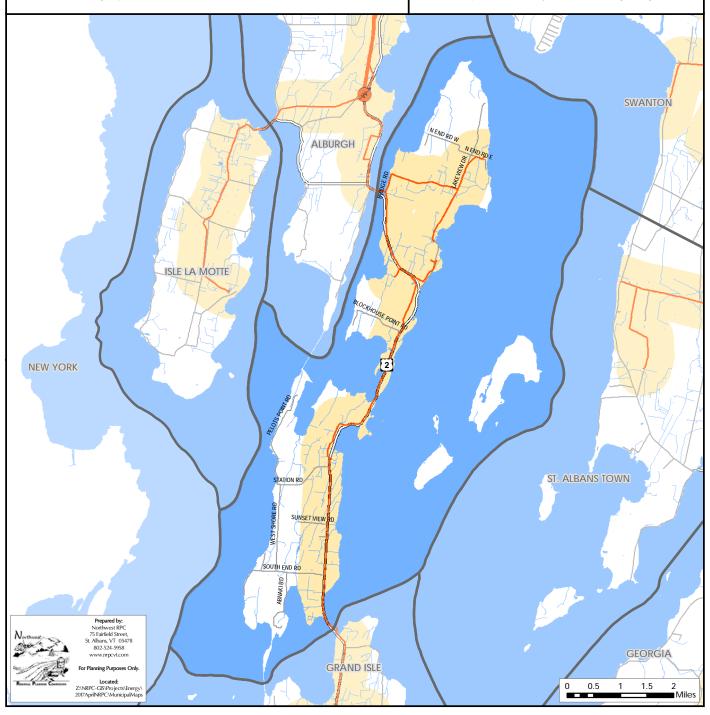
3 Phase Power Line Transmission Line

Enosburg Falls Electric

Transmission & 3 Phase **Power Infrastructure**

North Hero, Vermont Act 174 The Energy Development Improvement Act of 2016

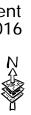
This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "sitting maps."


Legend

Substation

3 Phase Power Line

Transmission Line

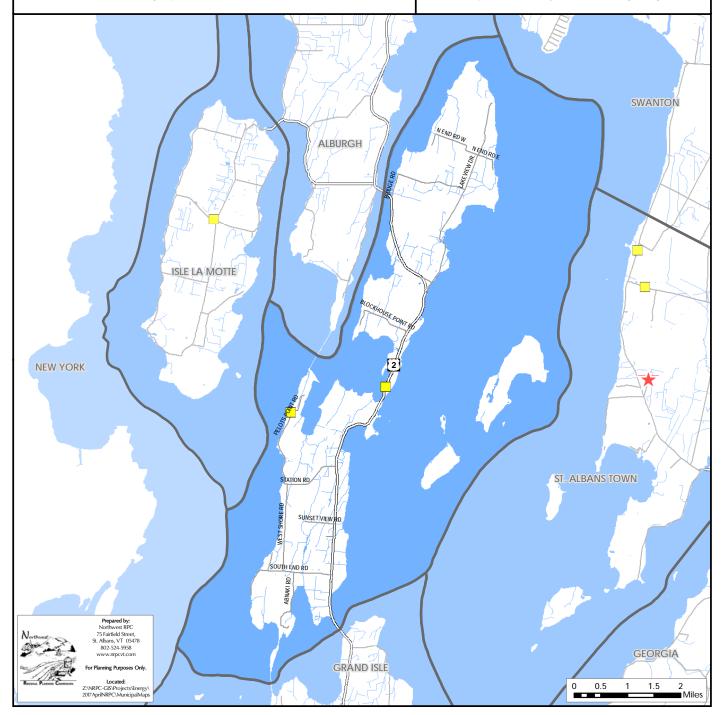

1/2 Mile Buffer (3 Phase Power Line & Transmission Line)

Existing Generation Facilities

North Hero, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend


Biomass Facility

Hydro Facility

Solar Facility

Wind Facility

Note: Only generators 15kW are shown on the map. A full list of all generators is available.

Hydro

North Hero, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Substation

3 Phase Power Line Transmission Line

Designated Outstanding Resource Water

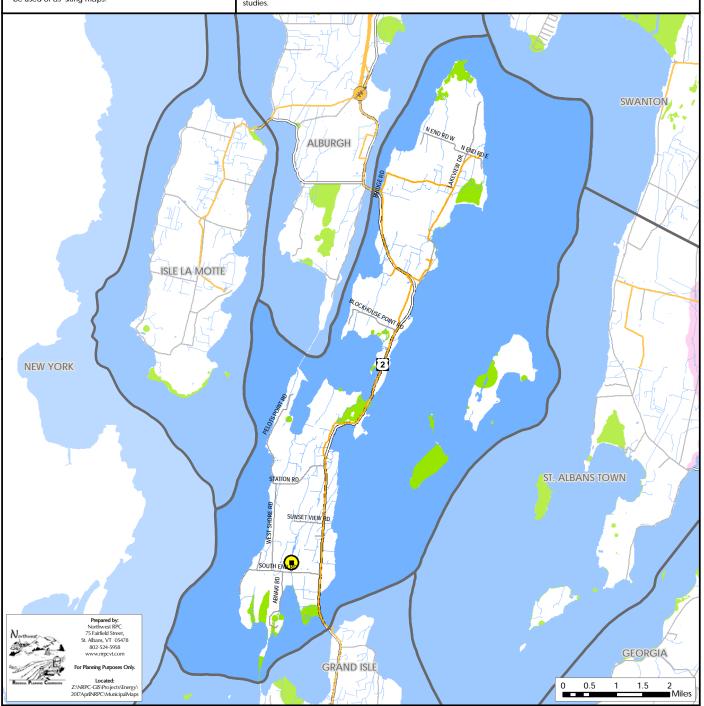
Known Constraint - Designated National Wild & Scenic River Possible Constraint -

Stressed or Impaired Water Possible Constraint - RINAs

Potential Hydroelectric Facility

< 50 kW Capacity

> 50 kW Capacity High Hazard with < 50 kW Capacity


High Hazard with > 50 kW Capacity

Operating Hydroelectric Facility

Dam not on National Wild and Scenic River Dam on National Wild

and Scenic River

NRPC,

Solar

North Hero, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipallities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

📈 Substation

3 Phase Power Line

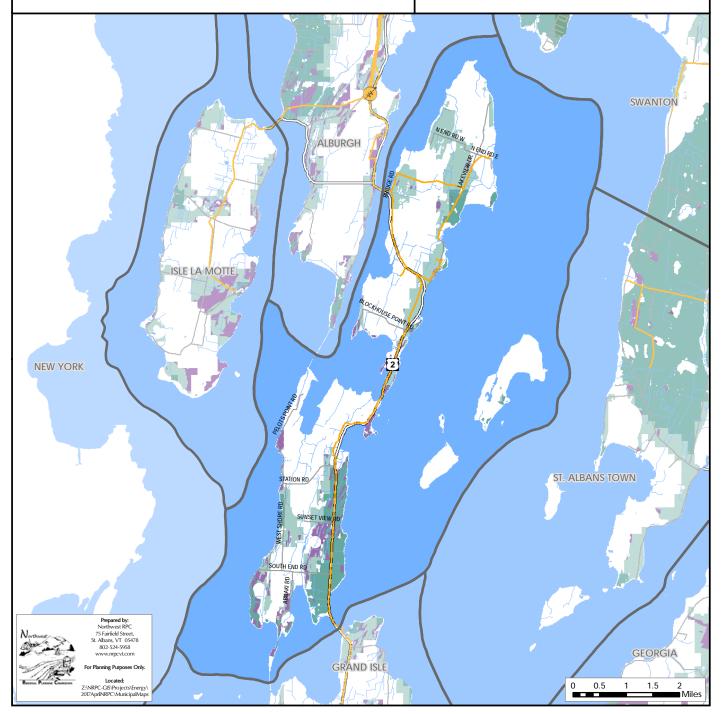
Transmission Line

1/2 Mile Buffer (3 Phase Power Line & Transmission Line)

Prime Solar/No Known Constraints

Base Solar/Possible Constraints

Wind


North Hero, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipallities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend Substation 3 Phase Power Line Transmission Line Prime Wind Areas of high wind potential and no known constraints. Darker areas have higher wind speeds. Base Wind Areas of high wind potential and a presence of possible constraints. Darker areas have higher wind speeds.

Woody Biomass

North Hero, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

★ Bio

Biomass System

Cow Power

Substation
3 Phase Power Line

____ 3

Transmission Line

Prin

Prime Woody Biomass/No Known Constraints

Base Woody Biomass/Possible Constraints

Bas

Sources: VCGI
Disclaimer: The accuracy of information presented is determined by its sources. Errors and omissions may exist. The Northwest RPC is not responsible for these. Questions of on-the-ground location can be resolved by site inspections and/or surveys by a registered surveyor. This map is not sufficient for delineation of features on-the-ground. This map identifies the presence of features, and may indicate relationships between features, but is not a replacement for surveyed information or engineering studies.

SWANTON ALBURGH **NEW YORK** ST. ALBANS TOWN Albans, VT 05478 GRAND ISLE

	All	II Generators in Municipality	Municipality			
Category	Sub - Category	Organization Type	Address	City	CPG Number	Capacity kW
Solar	Ground-mounted PV: Fixed Rack	Residential	532 Savage Point Rd	North Hero	2940	9.1
Solar	Ground-mounted PV: Fixed Rack	Residential	578 Station Rd	North Hero	5351	11.4
Solar	Ground-mounted PV: Fixed Rack	Business	5072 US Route 2	North Hero	7131	15
Solar	Ground-mounted PV: Fixed Rack	Residential	5072 US-2	North Hero	7131	
Solar	Hot Water	Residential	252 Station Rd	North Hero		
Solar	Roof-Mounted PV	Residential	310 Watson's Ridge	North Hero	2835	4.7
Solar	Roof-Mounted PV	Residential	1541 South End Rd	North Hero	3827	9
Solar	Roof-Mounted PV	Residential	1485 Pelots Point Rd	North Hero	2861	18.7
Solar	Roof-Mounted PV	Residential	458 Pelots Point Rd	North Hero	1433	4.6
Solar	Roof-Mounted PV	Residential	5944 Rt 2	North Hero	2876	6.2
Solar	Roof-Mounted PV	Residential	840 Station Rd	North Hero	2686	7.5
Solar	Roof-Mounted PV	Residential	57 Strong House Ln	North Hero	1396	3.5
Solar	Roof-Mounted PV	Residential	3097 US Rt 2	North Hero	6656	10

Municipal Analysis & Targets - Richford

The following is an explanation of the municipal energy data compiled by Northwest Regional Planning Commission (NRPC). The intent of the municipal energy data is to provide the municipalities with data required to ensure compliance with the requirements of Act 174 and "Enhanced Energy Planning" (24 V.S.A. 4352). The following tables contain data that estimates

current energy use and provides targets for future energy use across all sectors (transportation, heating, and electricity). It also sets targets for renewable energy generation within the municipality.

This data is meant to be a starting point for the municipality to begin planning its energy future and to talk about the changes that may need to occur within the municipality to ensure that local, regional and state energy goals are met. This includes the State of Vermont's goal to have 90% of all energy demand be met from renewable sources by 2050.

Figure 1 - Data Sources

ACS - American Community Survey
DOL -Vermont Department of Labor
DPS - Vermont Department of Public Service
EIA - Energy Information Administration
EVT - Efficiency Vermont
LEAP - Long-Range Energy Alternatives Planning
VEIC - Vermont Energy Investment Corporation
VTrans - Vermont Agency of Transportation

Data Sources

Estimates of current energy use consist primarily of data available from the American Community Survey (ACS), the Vermont Agency of Transportation (VTrans), the Vermont Department of Labor (DOL), and the Vermont Department of Public Service (DPS). Targets for future energy use are reliant upon the Long-range Energy Alternatives Planning (LEAP) analysis for the region completed the Vermont Energy Investment Corporation (VEIC). Targets for future energy generation have come from the regional planning commission and DPS. For more information on LEAP, see the Northwest Regional Energy Plan (www.nrpcvt.com). Targets for both future energy use and energy generation have been generally developed using a "top down" method of disaggregating regional data to the municipal level.

It is possible to develop "bottom up" data. For those municipalities interested in that approach, please see the Department of Public Service's Analysis and Targets Guidance (http://publicservice.vermont.gov/content/act-174-recommendations-and-determination-standards).

Please remember that the targets established by LEAP represent only one way to achieve energy goals. There may several other similar pathways that a municipality may choose to take in order to meet the 90x50 goal.

Below is a worksheet by worksheet explanation of the Municipal Template spreadsheet:

1. Municipal Data Summary

The following tables summarize all data that is required to be in a municipal plan if the plan is to meet the "determination" standards established by the Vermont Department of Public Service.

Table 1A: Current Municipal Transportation Ene	rgy Use
Transportation Data	Municipal Data
Total # of Passenger Vehicles (ACS 2011-2015)	1,549
Average Miles per Vehicle (Vtrans)	11,356
Total Miles Traveled	17,590,444
Realized MPG (2013 - VTrans 2015 Energy Profile)	18.6
Total Gallons Use per Year	945,723
Transportation BTUs (Billion)	114
Average Cost per Gallon of Gasoline (RPC)	2.31
Gasoline Cost per Year	2,184,620

This table uses data from the American Community Survey (ACS) and Vermont Agency of Transportation (VTrans) to calculate current transportation energy use and energy costs in the municipality.

Tal	ble 1B: Current M	unicipal Resider	itial Heating Energy	Use
Fuel Source	Municipal Households (ACS 2011-2015)	% of Municipal Households	Municipal Square Footage Heated	Municipal BTU (in Billions)
Natural Gas	2	0.2%	3,808	0
Propane	61	6.7%	109,808	7
Electricity	58	6.4%	75,936	5
Fuel Oil	571	62.7%	984,400	59
Coal	0	0.0%	0	0
Wood	215	23.6%	409,360	25
Solar	0	0.0%	0	0
Other	3	0.3%	5,712	0
No Fuel	0	0.0%	0	0
Total	910	100.0%	1,589,024	95

This table displays data from the ACS that estimates current municipal residential heating energy use.

Table 10	C: Current Munic	cipal Commercial En	ergy Use
	Commercial Establishments in Municipality (VT DOL)	Estimated Thermal Energy BTUs per Commercial Establishment (in Billions) (VDPS)	Estimated Thermal Energy BTUs by Commercial Establishments in Municipality (in Billions)
Municipal Commercial Energy Use	30	0.725	22

The table uses data available from the Vermont Department of Labor (VT DOL) and the Vermont Department of Public Service (DPS) to estimate current municipal commercial establishment energy use in the municipality.

Table 1D: Current Electricit	Table 1D: Current Electricity Use			
Use Sector	Current Electricity Use			
Residential (kWh)	8,180,301			
Commercial and Industrial (kWh)	7,697,197			
Total (kWh)	15,877,498			

This table displays current electricity use within the municipality. This data is available from Efficiency Vermont (EVT).

Table 1E: Residential Thermal Efficiency Targets			
	2025	2035	2050
"Residential - Increased Efficiency and Conservation (% of municipal households to be weatherized)"	5%	16%	78%

This table displays targets for thermal efficiency of residential structures. The data is based on a methodology developed by DPS using data available from the regional Long-range Energy Alternatives Planning (LEAP) analysis and ACS. The data in this table represents the percentage of municipal households that will need to be weatherized in the target years. The target is cumulative.

Table 1F: Commercial Thermal E	fficiency To	arget	
	2025	2035	2050
"Commercial - Increased Efficiency and Conservation (% of commercial establishments to be weatherized)"	25%	25%	73%

This table shows the same information as Table 1E, but sets a target for commercial thermal efficiency and weatherization. Information from the VT DOL is required to complete this target. The target is cumulative.

Table 1G: Thermal Fuel Switching (Residential and Commercial) – Wood Systems

	2025	2035	2050
New Efficient Wood Heat Systems (in units)	-3	-12	2

This table provides a target for new wood heating systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 1H: Thermal Fuel Switching (Residential and Commercial) – Heat Pumps

	2025	2035	2050
New Heat Pumps (in units)	109	249	465

This table provides a target for new heat pump systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 11: Electricity Efficiency Targets

	2025	2035	2050
Increase Efficiency and Conservation (BTUs)	25.2%	48.3%	100.7%

Data in this table displays a target for increased electricity efficiency and conservation during the target years. This target will be met through conversions to high efficiency appliances, electric heat pumps, and electric light-duty vehicles. These targets were developed using regional LEAP analysis. The target is cumulative.

Table 1J: Use of Renewables - Transportation

	2025	2035	2050
Renewable Energy Use - Transportation (BTUs)	8.4%	29.4%	89.6%

This data displays targets for the percentage of transportation energy use coming from renewable sources during each target year. This target will be met through conversions to electric light-duty vehicles and biodiesel heavy-duty vehicles. This data was developed using the LEAP analysis. The target is cumulative.

Table 1K: Use of Renewables - Heating			
	2025	2035	2050
Renewable Energy Use - Heating (BTUs)	46.0%	59.5%	87.5%

This data displays targets for the percentage of heating energy use coming from renewable sources during each target year. This target will be met through conversions to electric heat pumps and high efficiency wood heating systems. This data was developed using information from the LEAP analysis. The target is cumulative.

Table 1L: Use of Renewables - Electricity			
	2025	2035	2050
Renewable Energy Use - Electricity (MWh)	4,276.2	8,552.3	12,958.1

This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1Q. The target is cumulative.

Table 1M: Transportation Fuel Switching Ta	argets – Ele	ctric Vehic	cles
	2025	2035	2050

	2023	2033	2030
Electric Vehicles	136	1015	2414

This tables displays a target for switching from fossil fuel based vehicles (gasoline and diesel) to electric vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

Table 1N:	Transportation	Fuel Switching	Targets - Biodiesel
		→	

	2025	2035	2050
Biodiesel Vehicles	196	389	748

This tables displays a target for switching from fossil fuel based vehicles to biodiesel-powered vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

Table 10: Existing Renewable Generation			
Renewable Type	MW	MWh	
Solar	0.13	159.43	
Wind	0.01	29.13	
Hydro	0.00	0.00	
Biomass	0.00	0.00	
Other	0.00	0.00	
Total Existing Generation	0.14	188.56	

Table 10 shows existing renewable generation in the municipality, in MW and MWh, based on information available from the Vermont Department of Public Service.

Table 1P: Renewable Generation Potential			
Renewable Type	MW	MWh	
Rooftop Solar	1	1,300	
Ground-mounted Solar	406	497,515	
Wind	133	408,499	
Hydro	0	0	
Biomass and Methane	0	0	
Other	0	0	
Total Renewable Generation Potential	540	907,314	

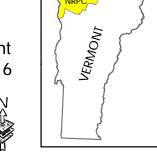
Renewable generation potential is based on mapping completed by the regional planning commission that is based on the Municipal Determination Standards and associated guidance documents developed by DPS. The renewable generation potential is expressed in MW and MWh by the type of renewable resource (solar, wind, hydro, etc.).

Table 10: Renewable Generation Targets

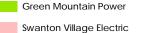
	2025	2035	2050
Total Renewable Generation Target (in MWh)	4,276.16	8,552.32	12,958.06

This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1L.

Table 1R: Sufficient Land?


	Y/N
Solar	Υ
Wind	Υ

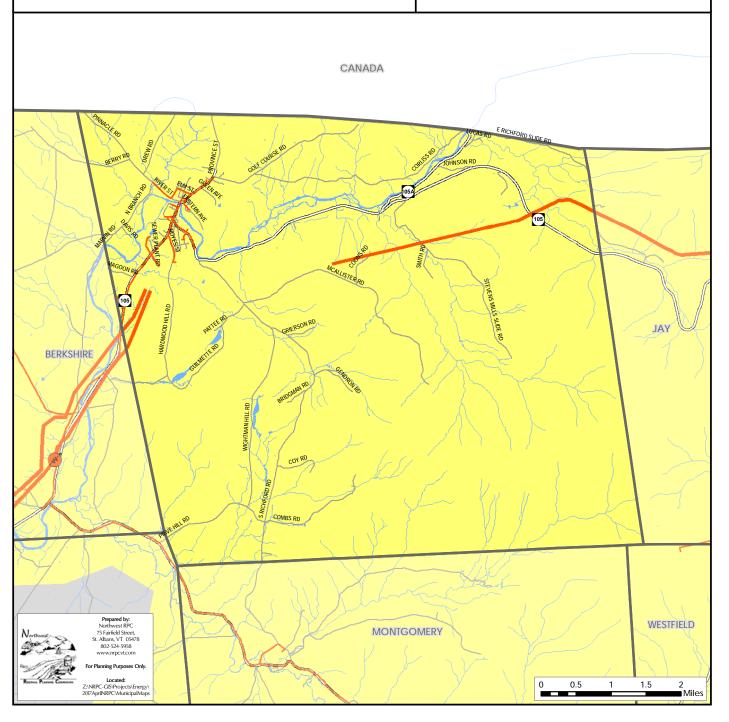
This table shows whether or not there is sufficient land in the municipality to meet the renewable generation targets based on the renewable generation potential in the municipality.


Utility Service Areas

Richford, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend **Utility Service Area Features**

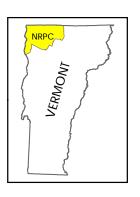


3 Phase Power Line Transmission Line

Substation

Vermont Electric Co-op

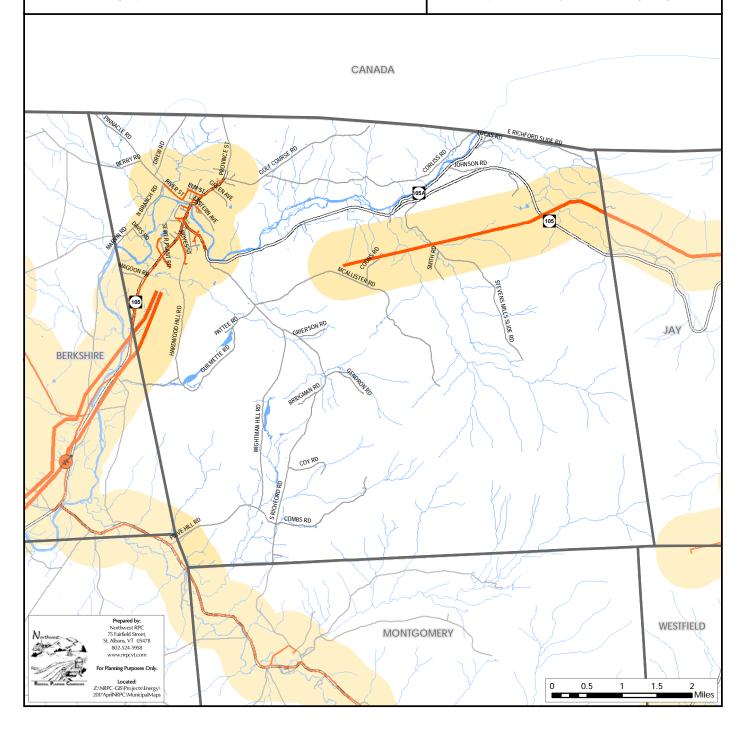
Enosburg Falls Electric



Transmission & 3 Phase **Power Infrastructure**

Richford, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "sitting maps."


Legend

Substation

3 Phase Power Line

Transmission Line

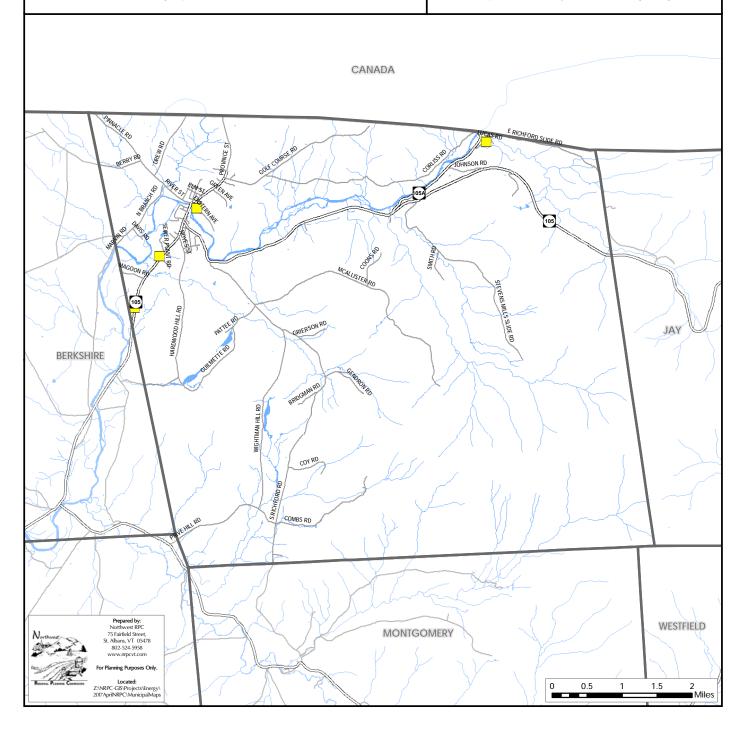
1/2 Mile Buffer (3 Phase Power Line & Transmission Line)

Existing Generation Facilities

Richford, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend


Biomass Facility

Note: Only generators 15kW are shown on the map. A full list of all generators is available.

Wind Facility

Hydro

Richford, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipallities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Substation

3 Phase Power Line

Designated Outstanding Resource Water

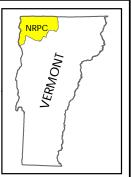
Known Constraint - Designated National Wild & Scenic River

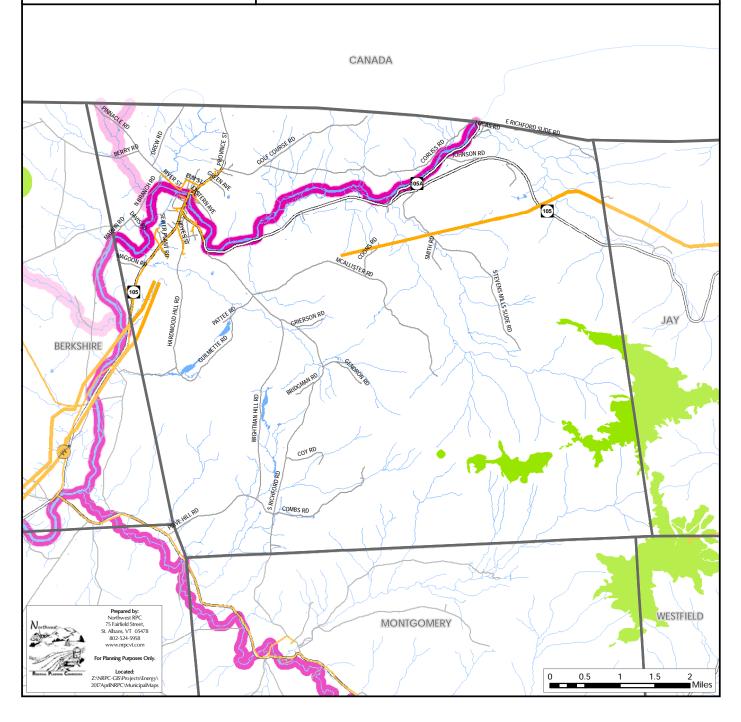
Possible Constraint -Stressed or Impaired Water

Possible Constraint - RINAs

Potential Hydroelectric Facility

< 50 kW Capacity

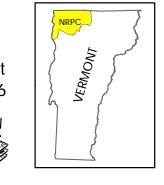

> 50 kW Capacity


High Hazard with < 50 kW Capacity High Hazard with > 50 kW Capacity

Operating Hydroelectric Facility

Dam not on National Wild and Scenic River

Dam on National Wild and Scenic River



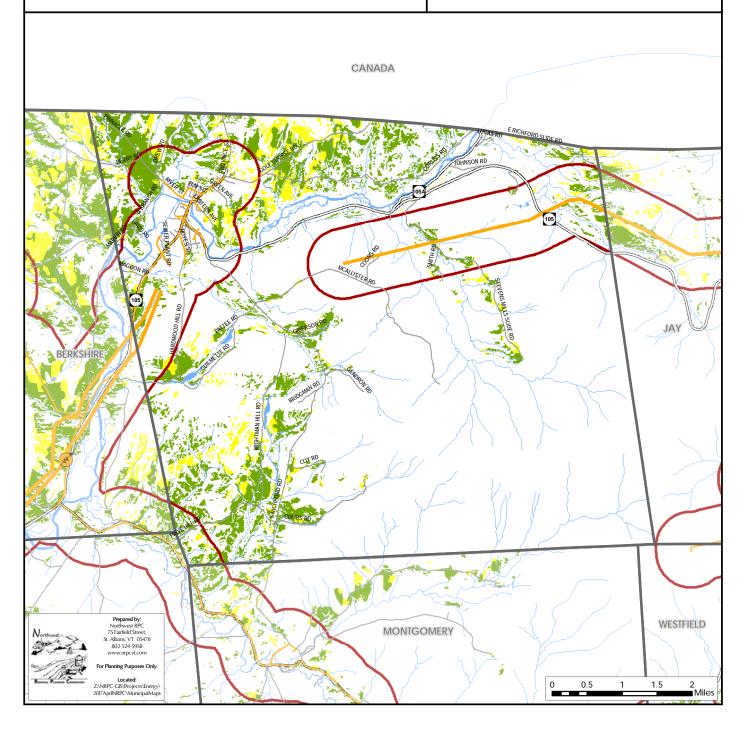
Solar

Richford, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Substation


3 Phase Power Line

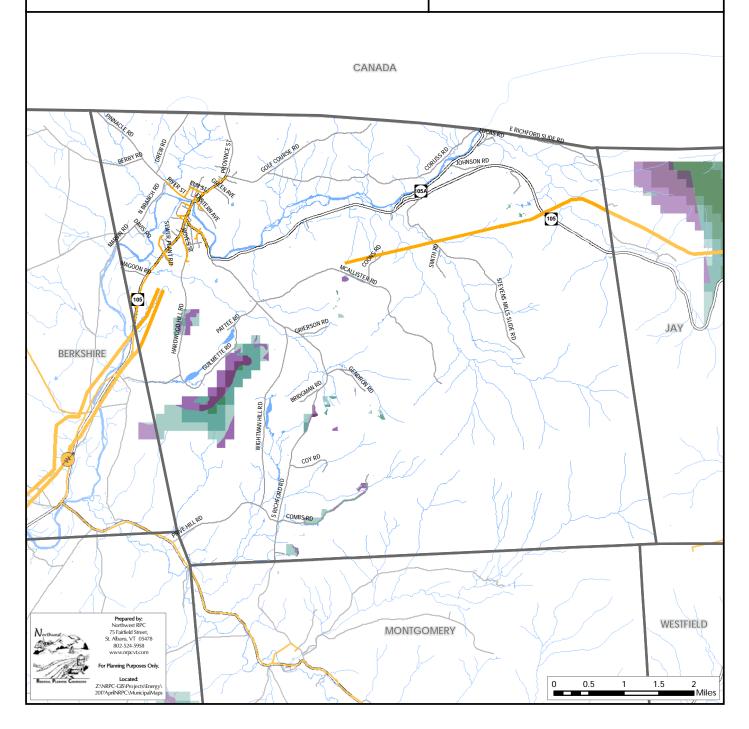
Transmission Line

1/2 Mile Buffer (3 Phase Power Line & Transmission Line)

Prime Solar/No Known Constraints

Base Solar/Possible Constraints

Wind


Richford, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend Substation 3 Phase Power Line Transmission Line Prime Wind Areas of high wind potential and no known constraints. Darker areas have higher wind speeds. Base Wind Areas of high wind potential and a presence of possible constraints. Darker areas have higher wind speeds.

Woody Biomass

Richford, Vermont Act 174 The Energy Development Improvement Act of 2016

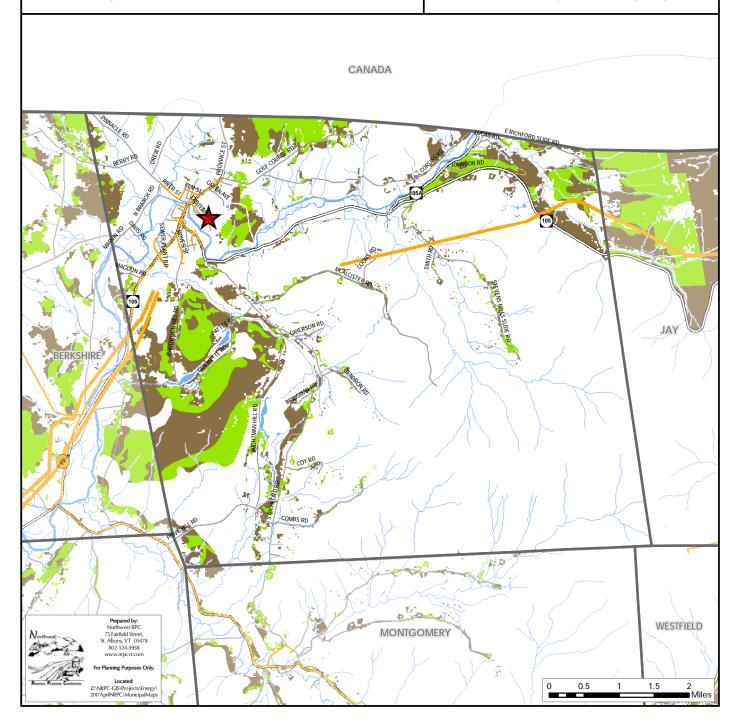
This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Biomass System

Cow Power

Substation


3 Phase Power Line Transmission Line

Prime Woody Biomass/No Known Constraints

Base Woody Biomass/Possible Constraints

	All	II Generators in Municipality	Municipality			
Category	Sub - Category	Organization Type	Address	City	CPG Number	Capacity kW
Solar	Ground-mounted PV: Fixed Rack	Residential	321 Prive Hill Road	Richford	1792	9.1
Solar	Ground-mounted PV: Fixed Rack	Residential	26 Lucas Road	Richford	7255	15
Solar	Ground-mounted PV: Pole	Residential	510 Stevens Mills Slide Rd	Richford	9099	4
Solar	Roof-Mounted PV	Residential	463 Hardwood Hill Rd	Richford	2822	4.9
Solar	Roof-Mounted PV	Residential	232 Hardwood Hill Rd	Richford	3030	4
Solar	Roof-Mounted PV	Institution	1 Corliss Heights	Richford	6009	50.7
Solar	Roof-Mounted PV	Business	328 S Main St	Richford	1136	28.8
Solar	Roof-Mounted PV	Business	1645 St. Albans Road	Richford	1146	15.7

Municipal Analysis & Targets - Saint Albans City

The following is an explanation of the municipal energy data compiled by Northwest Regional Planning Commission (NRPC). The intent of the municipal energy data is to provide the municipalities with data required to ensure compliance with the requirements of Act 174 and "Enhanced Energy Planning" (24 V.S.A. 4352). The following tables contain data that estimates

current energy use and provides targets for future energy use across all sectors (transportation, heating, and electricity). It also sets targets for renewable energy generation within the municipality.

This data is meant to be a starting point for the municipality to begin planning its energy future and to talk about the changes that may need to occur within the municipality to ensure that local, regional and state energy goals are met. This includes the State of Vermont's goal to have 90% of all energy demand be met from renewable sources by 2050.

Figure 1 - Data Sources

ACS - American Community Survey
DOL -Vermont Department of Labor
DPS - Vermont Department of Public Service
EIA - Energy Information Administration
EVT - Efficiency Vermont
LEAP - Long-Range Energy Alternatives Planning
VEIC - Vermont Energy Investment Corporation
VTrans - Vermont Agency of Transportation

Data Sources

Estimates of current energy use consist primarily of data available from the American Community Survey (ACS), the Vermont Agency of Transportation (VTrans), the Vermont Department of Labor (DOL), and the Vermont Department of Public Service (DPS). Targets for future energy use are reliant upon the Long-range Energy Alternatives Planning (LEAP) analysis for the region completed the Vermont Energy Investment Corporation (VEIC). Targets for future energy generation have come from the regional planning commission and DPS. For more information on LEAP, see the Northwest Regional Energy Plan (www.nrpcvt.com). Targets for both future energy use and energy generation have been generally developed using a "top down" method of disaggregating regional data to the municipal level.

It is possible to develop "bottom up" data. For those municipalities interested in that approach, please see the Department of Public Service's Analysis and Targets Guidance (http://publicservice.vermont.gov/content/act-174-recommendations-and-determination-standards).

Please remember that the targets established by LEAP represent only one way to achieve energy goals. There may several other similar pathways that a municipality may choose to take in order to meet the 90x50 goal.

Below is a worksheet by worksheet explanation of the Municipal Template spreadsheet:

1. Municipal Data Summary

The following tables summarize all data that is required to be in a municipal plan if the plan is to meet the "determination" standards established by the Vermont Department of Public Service.

Table 1A: Current Municipal Transportation Energy Use			
Transportation Data	Municipal Data		
Total # of Passenger Vehicles (ACS 2011-2015)	4,144		
Average Miles per Vehicle (Vtrans)	11,356		
Total Miles Traveled	47,059,264		
Realized MPG (2013 - VTrans 2015 Energy Profile)	18.6		
Total Gallons Use per Year	2,530,068		
Transportation BTUs (Billion)	305		
Average Cost per Gallon of Gasoline (RPC)	2.31		
Gasoline Cost per Year	5,844,457		

This table uses data from the American Community Survey (ACS) and Vermont Agency of Transportation (VTrans) to calculate current transportation energy use and energy costs in the municipality.

Tal	Table 1B: Current Municipal Residential Heating Energy Use						
Fuel Source	Municipal Households (ACS 2011-2015)	% of Municipal Households	Municipal Square Footage Heated	Municipal BTU (in Billions)			
Natural Gas	1897	66.0%	2,999,408	180			
Propane	121	4.2%	176,880	11			
Electricity	131	4.6%	174,096	10			
Fuel Oil	598	20.8%	942,176	57			
Coal	0	0.0%	0	0			
Wood	89	3.1%	160,304	10			
Solar	0	0.0%	0	0			
Other	31	1.1%	53,392	3			
No Fuel	9	0.3%	10,800	1			
Total	2876	100.0%	4,517,056	271			

This table displays data from the ACS that estimates current municipal residential heating energy use.

Table 1C: Current Municipal Commercial Energy Use						
	Commercial Establishments in Municipality (VT DOL)	Estimated Thermal Energy BTUs per Commercial Establishment (in Billions) (VDPS)	Estimated Thermal Energy BTUs by Commercial Establishments in Municipality (in Billions)			
Municipal Commercial Energy Use	356	0.725	258			

The table uses data available from the Vermont Department of Labor (VT DOL) and the Vermont Department of Public Service (DPS) to estimate current municipal commercial establishment energy use in the municipality.

Table 1D: Current Electricity Use				
Use Sector	Current Electricity Use			
Residential (kWh)	25,853,348			
Commercial and Industrial (kWh)	91,340,073			
Total (kWh)	117,193,421			

This table displays current electricity use within the municipality. This data is available from Efficiency Vermont (EVT).

Table 1E: Residential Thermal Efficiency Targets			
	2025	2035	2050
"Residential - Increased Efficiency and Conservation (% of municipal households to be weatherized)"	5%	16%	78%

This table displays targets for thermal efficiency of residential structures. The data is based on a methodology developed by DPS using data available from the regional Long-range Energy Alternatives Planning (LEAP) analysis and ACS. The data in this table represents the percentage of municipal households that will need to be weatherized in the target years. The target is cumulative.

Table 1F: Commercial Thermal Efficiency Target				
	2025	2035	2050	
"Commercial - Increased Efficiency and Conservation (% of commercial establishments to be weatherized)"	25%	25%	73%	

This table shows the same information as Table 1E, but sets a target for commercial thermal efficiency and weatherization. Information from the VT DOL is required to complete this target. The target is cumulative.

Table 1G: Thermal Fuel Switching (Residential and Commercial) – Wood Systems

	2025	2035	2050
New Efficient Wood Heat Systems (in units)	21	50	167

This table provides a target for new wood heating systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 1H: Thermal Fuel Switching (Residential and Commercial) – Heat Pumps

	2025	2035	2050
New Heat Pumps (in units)	306	731	1444

This table provides a target for new heat pump systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 11: Electricity Efficiency Targets

	2025	2035	2050
Increase Efficiency and Conservation (BTUs)	25.2%	48.3%	100.7%

Data in this table displays a target for increased electricity efficiency and conservation during the target years. This target will be met through conversions to high efficiency appliances, electric heat pumps, and electric light-duty vehicles. These targets were developed using regional LEAP analysis. The target is cumulative.

Table 1J: Use of Renewables - Transportation

	2025	2035	2050
Renewable Energy Use - Transportation (BTUs)	16.3%	41.3%	93.2%

This data displays targets for the percentage of transportation energy use coming from renewable sources during each target year. This target will be met through conversions to electric light-duty vehicles and biodiesel heavy-duty vehicles. This data was developed using the LEAP analysis. The target is cumulative.

Table 1K: Use of Renewables - Heating				
	2025	2035	2050	
Renewable Energy Use - Heating (BTUs)	43.1%	55.6%	83.0%	

This data displays targets for the percentage of heating energy use coming from renewable sources during each target year. This target will be met through conversions to electric heat pumps and high efficiency wood heating systems. This data was developed using information from the LEAP analysis. The target is cumulative.

Table 1L: Use of Renewables	– Electricit	у	
	2025	2035	2050
Renewable Energy Use - Electricity (MWh)	2,984.8	5,969.5	9,044.7

This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1Q. The target is cumulative.

Table 1M: Transportation Fuel Switching Ta	argets – Ele	ctric Vehic	les
	2025	2035	2050

2715

6459

363

This tables displays a target for switching from fossil fuel based vehicles (gasoline and diesel) to electric vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

Table 1N: Transportation Fuel Switchin	g Targets -	- Biodiesel	
	2025	2035	2050
Biodiesel Vehicles	1649	3303	6416

This tables displays a target for switching from fossil fuel based vehicles to biodiesel-powered vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

Electric Vehicles

Table 10: Existin	Table 10: Existing Renewable Generation					
Renewable Type	MW	MWh				
Solar	0.93	1140.55				
Wind	0.00	0.00				
Hydro	0.00	0.00				
Biomass	0.00	0.00				
Other	0.00	0.00				
Total Existing Generation	0.93	1140.55				

Table 10 shows existing renewable generation in the municipality, in MW and MWh, based on information available from the Vermont Department of Public Service.

Table 1P: Renewable Generation Potential					
Renewable Type	MW	MWh			
Rooftop Solar	5	5,710			
Ground-mounted Solar	33	40,932			
Wind	53	163,977			
Hydro	0	0			
Biomass and Methane	0	0			
Other	0	0			
Total Renewable Generation Potential	92	210,619			

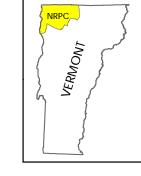
Renewable generation potential is based on mapping completed by the regional planning commission that is based on the Municipal Determination Standards and associated guidance documents developed by DPS. The renewable generation potential is expressed in MW and MWh by the type of renewable resource (solar, wind, hydro, etc.).

Table 10: Renewable Generation Targets

	2025	2035	2050
Total Renewable Generation Target (in MWh)	2,984.75	5,969.50	9,044.70

This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1L.

Table 1R: Sufficient Land?


	Y/N
Solar	Υ
Wind	Υ

This table shows whether or not there is sufficient land in the municipality to meet the renewable generation targets based on the renewable generation potential in the municipality.

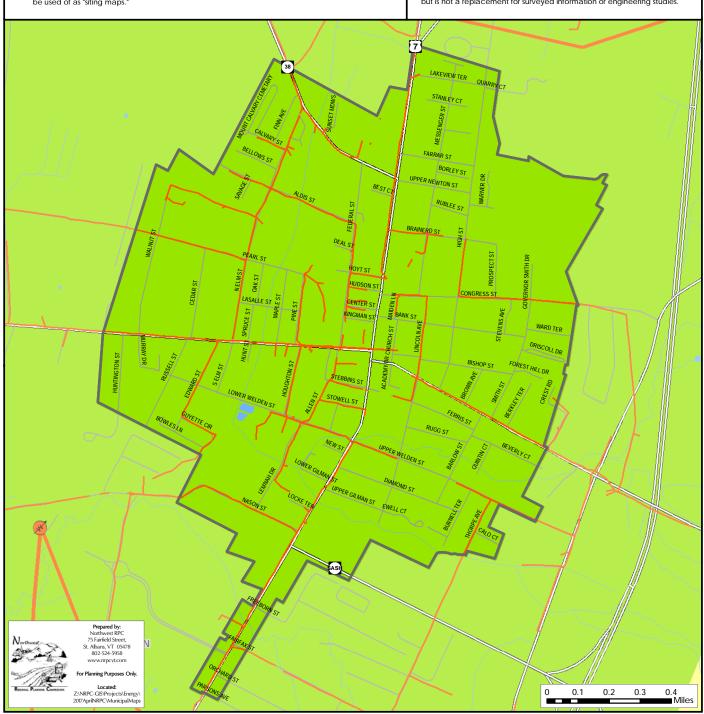
Utility Service Areas

St. Albans City, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may enors by municipalities and regions. Inis may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend **Utility Service Area Features**

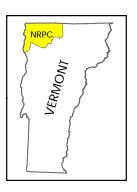
Green Mountain Power


Vermont Electric Co-op

Swanton Village Electric

3 Phase Power Line Transmission Line

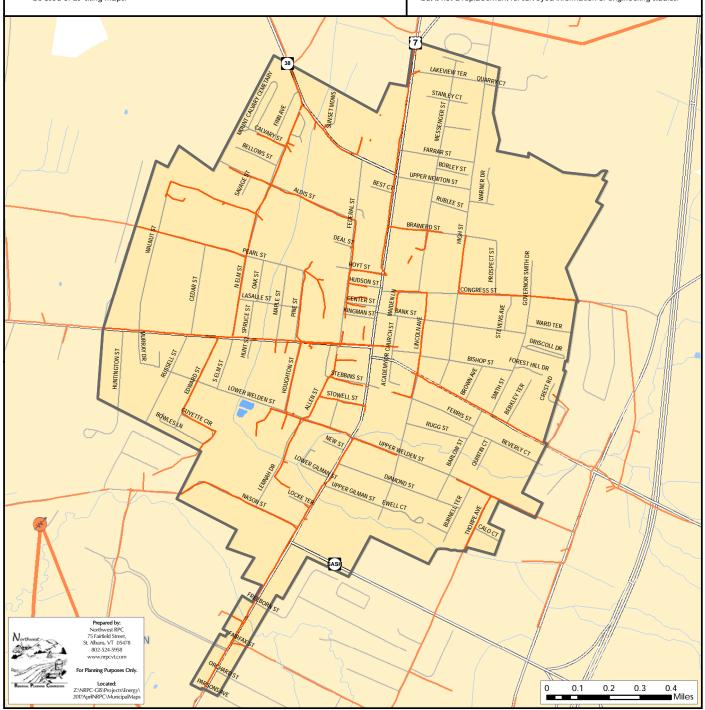
Enosburg Falls Electric



Transmission & 3 Phase Power Infrastructure

St. Albans City, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "sitting maps."


Legend

Substation

Transmission Line

3 Phase Power Line

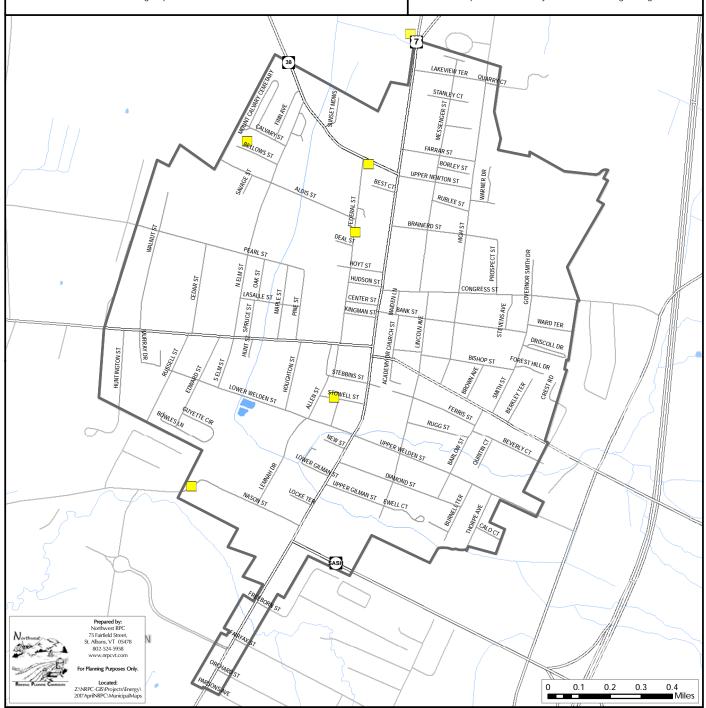
1/2 Mile Buffer (3 Phase Power Line & Transmission Line)

Existing Generation Facilities

St. Albans City, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

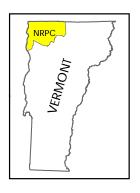

Biomass Facility

Hydro Facility

Solar Facility

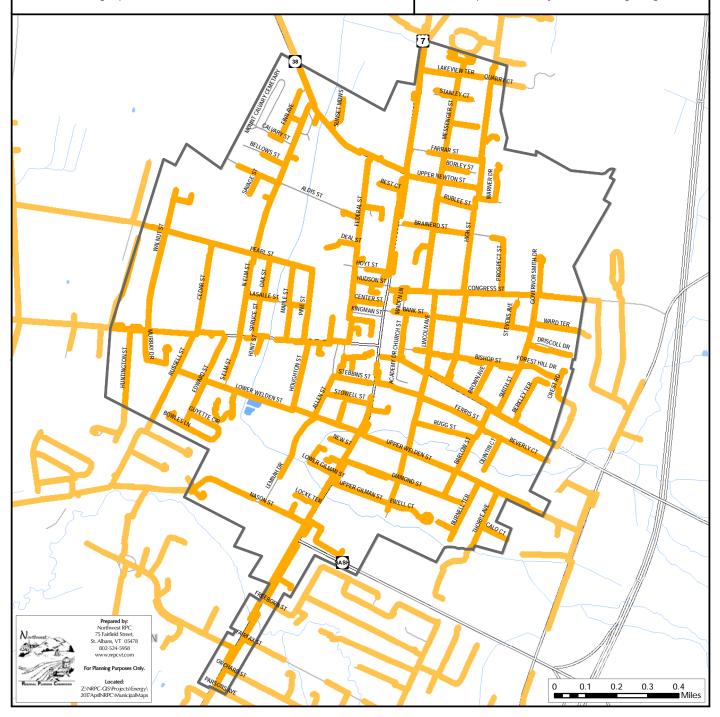
Note: Only generators 15kW are shown on the map. A full list of all generators is

Wind Facility



Natural Gas Lines

St. Albans City, Vermont Act 174 The Energy Development Improvement Act of 2016


This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Natural Gas Line

Hydro

St. Albans City, Vermont Act 174 The Energy Development

Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Substation

3 Phase Power Line Transmission Line

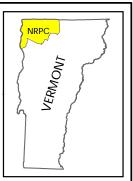
Designated Outstanding Resource Water

Known Constraint - Designated National Wild & Scenic River Possible Constraint

Stressed or Impaired Water Possible Constraint - RINAs

High Hazard with > 50 kW Capacity H)

Operating Hydroelectric Facility Dam not on National Wild and Scenic River

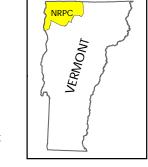

Potential Hydroelectric Facility


< 50 kW Capacity

> 50 kW Capacity

High Hazard with < 50 kW Capacity

Dam on National Wild and Scenic River



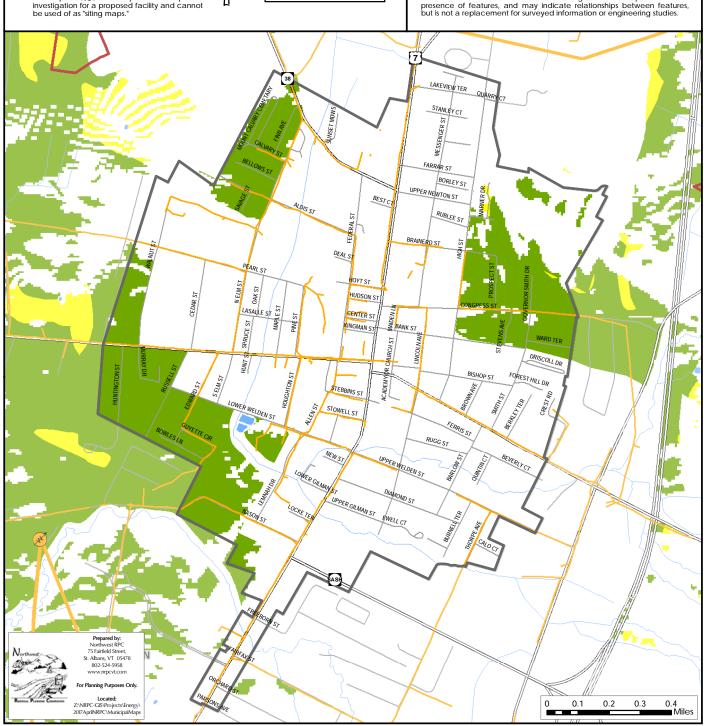
Solar

St. Albans City, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Substation


3 Phase Power Line

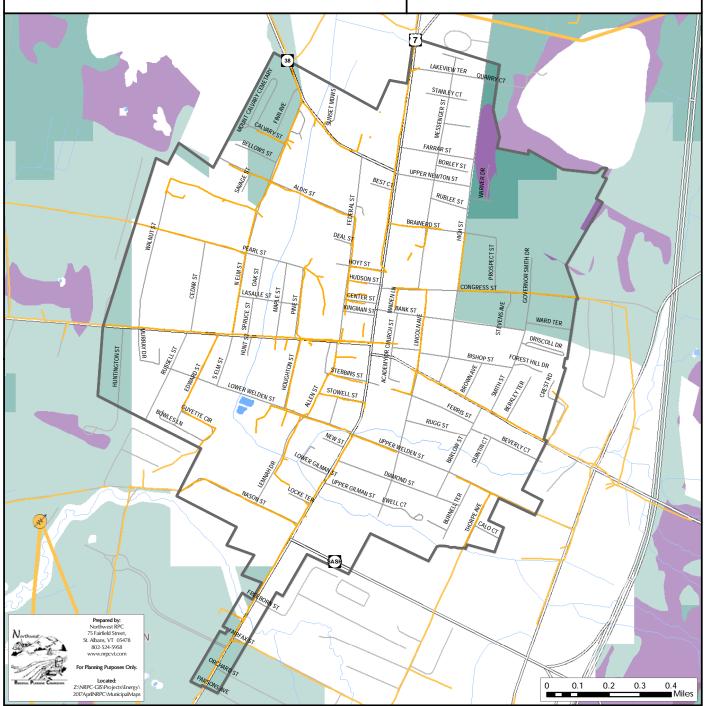
Transmission Line

1/2 Mile Buffer (3 Phase Power Line & Transmission Line)

Prime Solar/No Known Constraints

Base Solar/Possible Constraints

Wind


St. Albans City, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

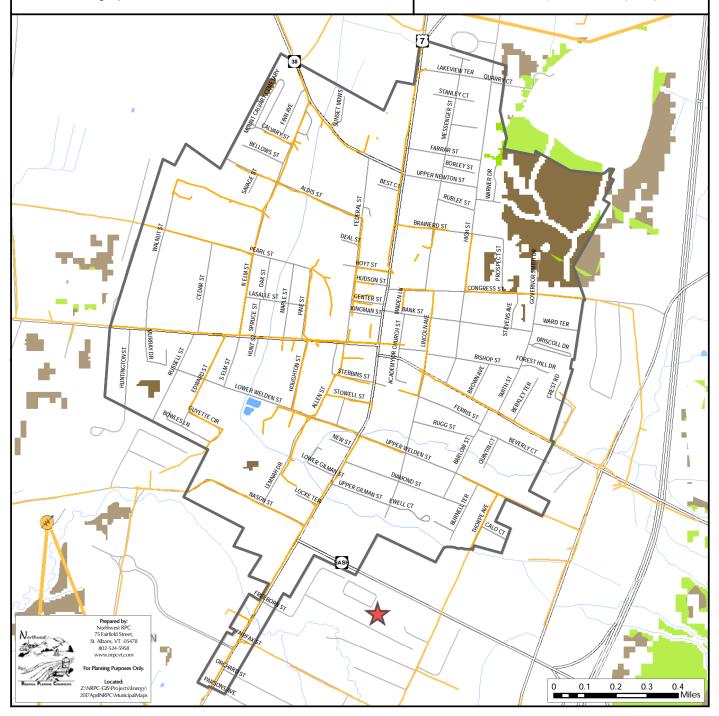
Legend Substation 3 Phase Power Line Transmission Line Prime Wind Areas of high wind potential and no known constraints. Darker areas have higher wind speeds. Sources: VCGI Disclaimer: The accuracy of information presented is determined by its sources. Errors and omissions may exist. The Northwest RPC is not responsible for these Questions of public argumel location can be responsed.

Woody Biomass

St. Albans City, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipallities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Biomass System


Cow Power

Substation

3 Phase Power Line

Transmission Line Prime Woody Biomass/No Known Constraints

Base Woody Biomass/Possible Constraints

	AI	All Generators in Municipality	Municipality			
Category	Sub - Category	Organization Type	Address	City	CPG Number	Capacity kW
Solar	Ground-mounted PV: Tracker	Institution	29 Bellows Road	St. Albans	3065.00	142.50
Solar	Roof-Mounted PV	Residential	8 Hodges St	St. Albans	3530.00	4.60
Solar	Roof-Mounted PV	Institution	71 South Main Street	St. Albans	1036.00	12.00
Solar	Roof-Mounted PV	Residential	153 Federal St	St. Albans	2194.00	25.70
Solar	Roof-Mounted PV	Residential	34 Beverly Ct	St. Albans	2751.00	2.60
Solar	Roof-Mounted PV	Residential	147 High St	St. Albans	3590.00	4.30
Solar	Roof-Mounted PV	Residential	95 High St	St. Albans	6102.00	6.40
Solar	Roof-Mounted PV	Residential	68 Smith St	St. Albans	3816.00	5.00
Solar	Roof-Mounted PV	Residential	10 Upper Welden Street	St. Albans	3488.00	4.80
Solar	Roof-Mounted PV	Residential	8 Beverly Ct	St. Albans	2640.00	3.70
Solar	Roof-Mounted PV	Residential	73 Ferris Street	St. Albans	4227.00	00.9
Solar	Roof-Mounted PV	Residential	60 Walnut St	St. Albans	2721.00	4.30
Solar	Roof-Mounted PV	Residential	112 Lincoln Av	St. Albans	2682.00	3.70
Solar	Roof-Mounted PV	Residential	12 Nason St	St. Albans	3765.00	4.00
Solar	Roof-Mounted PV	Residential	27 Beverly Court	St. Albans	2904.00	5.70
Solar	Roof-Mounted PV	Residential	25 Stowell St	St. Albans	1795.00	36.10
Solar	Roof-Mounted PV	Residential	76 Bank Street	St. Albans	0.00	10.00
Solar	Roof-Mounted PV	Residential	21 Barlow Street	St. Albans	0.00	90.9
Solar	Roof-Mounted PV	Residential	9 Thorpe Ave	St. Albans	0.00	7.60
Solar	Roof-Mounted PV	Residential	59 Cedar Street	St. Albans	00.7769	3.80
Solar	Roof-Mounted PV	Residential	77 Nason Street	St. Albans	6537.00	22.52
Solar	Roof-Mounted PV	Residential	23 Cedar Street	St. Albans	7315.00	4.00
Solar	Roof-Mounted PV	Residential	12 Thorpe Avenue	St. Albans	0.00	4.20
Solar	Roof-Mounted PV	Residential	57 Walnut Street	St. Albans	0.00	3.00
Solar	Roof-Mounted PV	Residential	10 Thorpe Ave	St. Albans	0.00	5.00
Solar	Roof-Mounted PV	Residential	128 S Main St	St. Albans	7493.00	3.60
Solar	Roof-Mounted PV	Residential	48 Maple Street	St. Albans	00.00	3.60

		All Generators in Municipality	. Municipality			
Category	Sub - Category	Organization Type	Address	City	CPG Number	Capacity kW
Solar	Roof-Mounted PV	Residential	7 Lakeview Terr	St. Albans	0.00	3.60
Solar	Roof-Mounted PV	Residential	45 Huntington Street	St. Albans	0.00	7.60
Solar	Roof-Mounted PV	Residential	120 Lincoln Avenue	St. Albans	0.00	3.80
Solar	Roof-Mounted PV	Residential	9 Ewell Court	St. Albans	0.00	4.20
Solar	Roof-Mounted PV	Business	20 Lower Newton Street	St. Albans	0.00	500.00
Solar	Roof-Mounted PV	Residential	28 Beverly Court	St. Albans	0.00	5.00
Solar	Roof-Mounted PV	Residential	17 Murray Drive	St. Albans	0.00	5.50
Solar	Roof-Mounted PV	Residential	11 Brown Avenue	St. Albans	0.00	5.20
Solar	Roof-Mounted PV	Residential	29 Beverly Court	St. Albans	0.00	3.80
Solar	Roof-Mounted PV	Residential	20 Lakeview Terrace	St. Albans	0.00	90.9
Solar	Roof-Mounted PV	Residential	70 Bank Street	St. Albans	0.00	11.40
Solar	Roof-Mounted PV	Residential	100 Congress St	St. Albans	00.6099	5.00
Solar	Roof-Mounted PV	Residential	113 Bank Street	St. Albans	0.00	3.00
Solar	Roof-Mounted PV	Residential	74 Upper Welden St	St. Albans	0.00	90.9
Solar	Roof-Mounted PV	Residential	19 Guyette Circle	St. Albans	0.00	5.00
Solar	Roof-Mounted PV	Residential	26 Finn Avenue	St. Albans	0.00	5.00
Solar	Roof-Mounted PV	Residential	20 Thorpe Avenue	St. Albans	00:00	5.00

Municipal Analysis & Targets - Saint Albans Town

The following is an explanation of the municipal energy data compiled by Northwest Regional Planning Commission (NRPC). The intent of the municipal energy data is to provide the municipalities with data required to ensure compliance with the requirements of Act 174 and "Enhanced Energy Planning" (24 V.S.A. 4352). The following tables contain data that estimates

current energy use and provides targets for future energy use across all sectors (transportation, heating, and electricity). It also sets targets for renewable energy generation within the municipality.

This data is meant to be a starting point for the municipality to begin planning its energy future and to talk about the changes that may need to occur within the municipality to ensure that local, regional and state energy goals are met. This includes the State of Vermont's goal to have 90% of all energy demand be met from renewable sources by 2050.

Figure 1 - Data Sources

ACS - American Community Survey
DOL -Vermont Department of Labor
DPS - Vermont Department of Public Service
EIA - Energy Information Administration
EVT - Efficiency Vermont
LEAP - Long-Range Energy Alternatives Planning
VEIC - Vermont Energy Investment Corporation
VTrans - Vermont Agency of Transportation

Data Sources

Estimates of current energy use consist primarily of data available from the American Community Survey (ACS), the Vermont Agency of Transportation (VTrans), the Vermont Department of Labor (DOL), and the Vermont Department of Public Service (DPS). Targets for future energy use are reliant upon the Long-range Energy Alternatives Planning (LEAP) analysis for the region completed the Vermont Energy Investment Corporation (VEIC). Targets for future energy generation have come from the regional planning commission and DPS. For more information on LEAP, see the Northwest Regional Energy Plan (www.nrpcvt.com). Targets for both future energy use and energy generation have been generally developed using a "top down" method of disaggregating regional data to the municipal level.

It is possible to develop "bottom up" data. For those municipalities interested in that approach, please see the Department of Public Service's Analysis and Targets Guidance (http://publicservice.vermont.gov/content/act-174-recommendations-and-determination-standards).

Please remember that the targets established by LEAP represent only one way to achieve energy goals. There may several other similar pathways that a municipality may choose to take in order to meet the 90x50 goal.

Below is a worksheet by worksheet explanation of the Municipal Template spreadsheet:

1. Municipal Data Summary

The following tables summarize all data that is required to be in a municipal plan if the plan is to meet the "determination" standards established by the Vermont Department of Public Service.

Table 1A: Current Municipal Transportation Ene	rgy Use
Transportation Data	Municipal Data
Total # of Passenger Vehicles (ACS 2011-2015)	4,433
Average Miles per Vehicle (Vtrans)	11,356
Total Miles Traveled	50,341,148
Realized MPG (2013 - VTrans 2015 Energy Profile)	18.6
Total Gallons Use per Year	2,706,513
Transportation BTUs (Billion)	326
Average Cost per Gallon of Gasoline (RPC)	2.31
Gasoline Cost per Year	6,252,046

This table uses data from the American Community Survey (ACS) and Vermont Agency of Transportation (VTrans) to calculate current transportation energy use and energy costs in the municipality.

Tal	ble 1B: Current M	unicipal Resider	itial Heating Energy	Use
Fuel Source	Municipal Households (ACS 2011-2015)	% of Municipal Households	Municipal Square Footage Heated	Municipal BTU (in Billions)
Natural Gas	892	38.8%	1,499,136	90
Propane	196	8.5%	373,184	22
Electricity	0	0.0%	0	0
Fuel Oil	902	39.2%	1,590,688	95
Coal	0	0.0%	0	0
Wood	279	12.1%	531,216	32
Solar	0	0.0%	0	0
Other	32	1.4%	38,400	2
No Fuel	0	0.0%	0	0
Total	2301	100.0%	4,032,624	242

This table displays data from the ACS that estimates current municipal residential heating energy use.

Table 10	C: Current Munic	cipal Commercial En	ergy Use
	Commercial Establishments in Municipality (VT DOL)	Estimated Thermal Energy BTUs per Commercial Establishment (in Billions) (VDPS)	Estimated Thermal Energy BTUs by Commercial Establishments in Municipality (in Billions)
Municipal Commercial Energy Use	101	0.725	73

The table uses data available from the Vermont Department of Labor (VT DOL) and the Vermont Department of Public Service (DPS) to estimate current municipal commercial establishment energy use in the municipality.

Table 1D: Current Electricity Use				
Use Sector	Current Electricity Use			
Residential (kWh)	20,684,476			
Commercial and Industrial (kWh)	25,913,897			
Total (kWh)	46,598,373			

This table displays current electricity use within the municipality. This data is available from Efficiency Vermont (EVT).

Table 1E: Residential Thermal Efficiency Targets			
	2025	2035	2050
"Residential - Increased Efficiency and Conservation (% of municipal households to be weatherized)"	5%	16%	78%

This table displays targets for thermal efficiency of residential structures. The data is based on a methodology developed by DPS using data available from the regional Long-range Energy Alternatives Planning (LEAP) analysis and ACS. The data in this table represents the percentage of municipal households that will need to be weatherized in the target years. The target is cumulative.

Table 1F: Commercial Thermal Efficiency Target			
	2025	2035	2050
"Commercial - Increased Efficiency and Conservation (% of commercial establishments to be weatherized)"	25%	25%	73%

This table shows the same information as Table 1E, but sets a target for commercial thermal efficiency and weatherization. Information from the VT DOL is required to complete this target. The target is cumulative.

Table 1G: Thermal Fuel Switching (Residential and Commercial) – Wood Systems

	2025	2035	2050
New Efficient Wood Heat Systems (in units)	10	25	103

This table provides a target for new wood heating systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 1H: Thermal Fuel Switching (Residential and Commercial) – Heat Pumps

	2025	2035	2050
New Heat Pumps (in units)	238	568	1122

This table provides a target for new heat pump systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 11: Electricity Efficiency Targets

	2025	2035	2050
Increase Efficiency and Conservation (BTUs)	25.2%	48.3%	100.7%

Data in this table displays a target for increased electricity efficiency and conservation during the target years. This target will be met through conversions to high efficiency appliances, electric heat pumps, and electric light-duty vehicles. These targets were developed using regional LEAP analysis. The target is cumulative.

Table 1J: Use of Renewables - Transportation

	2025	2035	2050
Renewable Energy Use - Transportation (BTUs)	8.4%	29.3%	89.5%

This data displays targets for the percentage of transportation energy use coming from renewable sources during each target year. This target will be met through conversions to electric light-duty vehicles and biodiesel heavy-duty vehicles. This data was developed using the LEAP analysis. The target is cumulative.

Table 1K: Use of Renewables – Heating			
	2025	2035	2050
Renewable Energy Use - Heating (BTUs)	45.5%	58.8%	86.7%

This data displays targets for the percentage of heating energy use coming from renewable sources during each target year. This target will be met through conversions to electric heat pumps and high efficiency wood heating systems. This data was developed using information from the LEAP analysis. The target is cumulative.

Table 1L: Use of Renewables - Electricity			
	2025	2035	2050
Renewable Energy Use - Electricity (MWh)	7,524.9	15,049.9	22,802.8

This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1Q. The target is cumulative.

Table 1M: Transportation Fuel Switching Ta	argets – Ele	ctric Vehic	cles
	2025	2035	2050

	2023	2000	2000
Electric Vehicles	388	2905	6910

This tables displays a target for switching from fossil fuel based vehicles (gasoline and diesel) to electric vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

Table 1N: Trans	portation Fue	I Switchina	Targets -	Biodiesel
		$\boldsymbol{\mathcal{J}}$	\mathcal{L}	

	2025	2035	2050
Biodiesel Vehicles	555	1103	2119

This tables displays a target for switching from fossil fuel based vehicles to biodiesel-powered vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

Table 10: Existing Renewable Generation				
Renewable Type	MW	MWh		
Solar	4.33	5310.31		
Wind	0.01	42.92		
Hydro	0.00	0.00		
Biomass	0.00	0.00		
Other	0.00	0.00		
Total Existing Generation	4.34	5353.24		

Table 10 shows existing renewable generation in the municipality, in MW and MWh, based on information available from the Vermont Department of Public Service.

Table 1P: Renewable Generation Potential				
Renewable Type	MW	MWh		
Rooftop Solar	3	3,441		
Ground-mounted Solar	993	1,217,284		
Wind	2,487	7,626,537		
Hydro	0	0		
Biomass and Methane	0	0		
Other	0	0		
Total Renewable Generation Potential	3,483	8,847,263		

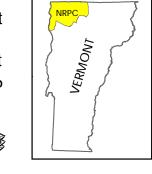
Renewable generation potential is based on mapping completed by the regional planning commission that is based on the Municipal Determination Standards and associated guidance documents developed by DPS. The renewable generation potential is expressed in MW and MWh by the type of renewable resource (solar, wind, hydro, etc.).

Table 10: Renewable Generation Targets

	2025	2035	2050
Total Renewable Generation Target (in MWh)	7,524.93	15,049.86	22,802.82

This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1L.

Table 1R: Sufficient Land?


	Y/N
Solar	Υ
Wind	Υ

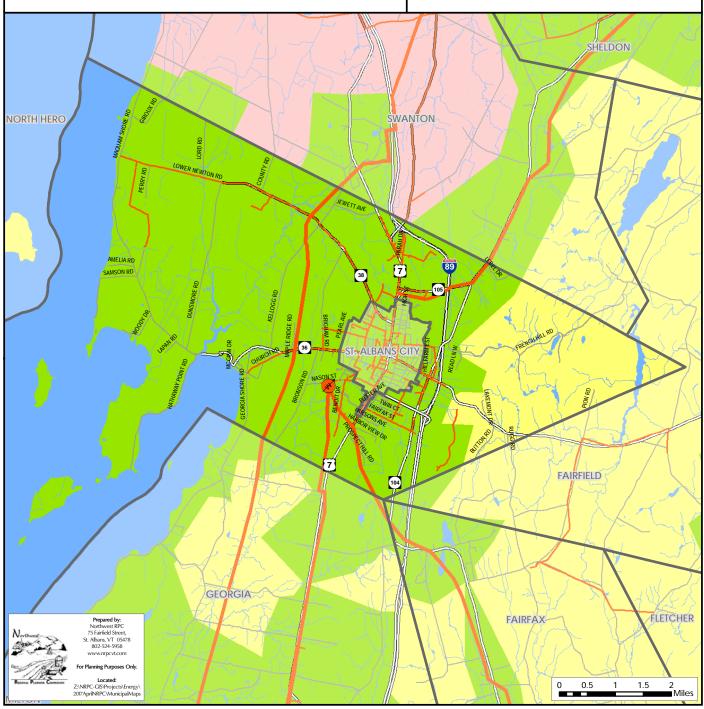
This table shows whether or not there is sufficient land in the municipality to meet the renewable generation targets based on the renewable generation potential in the municipality.

Utility Service Areas

St. Albans Town, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend **Utility Service Area Features**


3 Phase Power Line

Vermont Electric Co-op

Swanton Village Electric

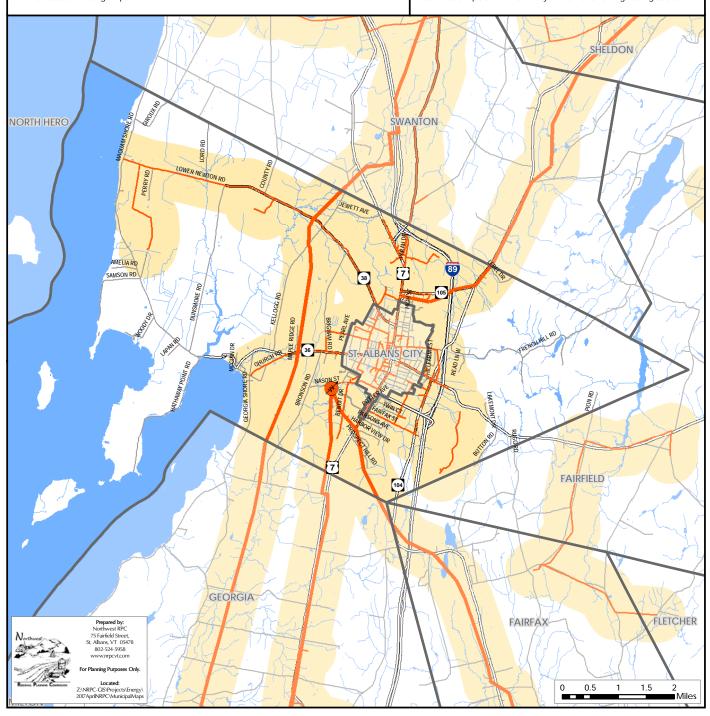
Transmission Line

Enosburg Falls Electric

Transmission & 3 Phase **Power Infrastructure**

St. Albans Town, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "sitting maps."


Legend

Substation

3 Phase Power Line

Transmission Line

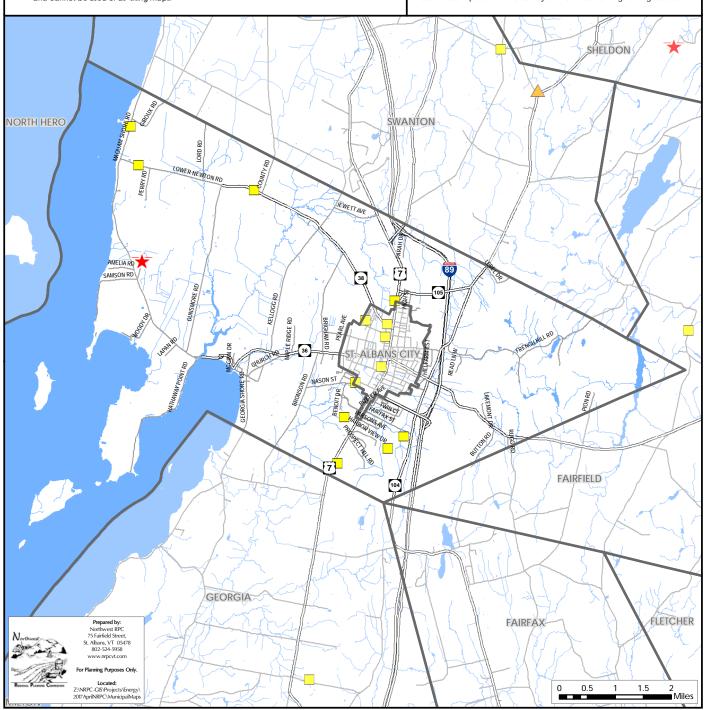
1/2 Mile Buffer (3 Phase Power Line & Transmission Line)

Existing Generation Facilities

St. Albans Town, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend


Biomass Facility

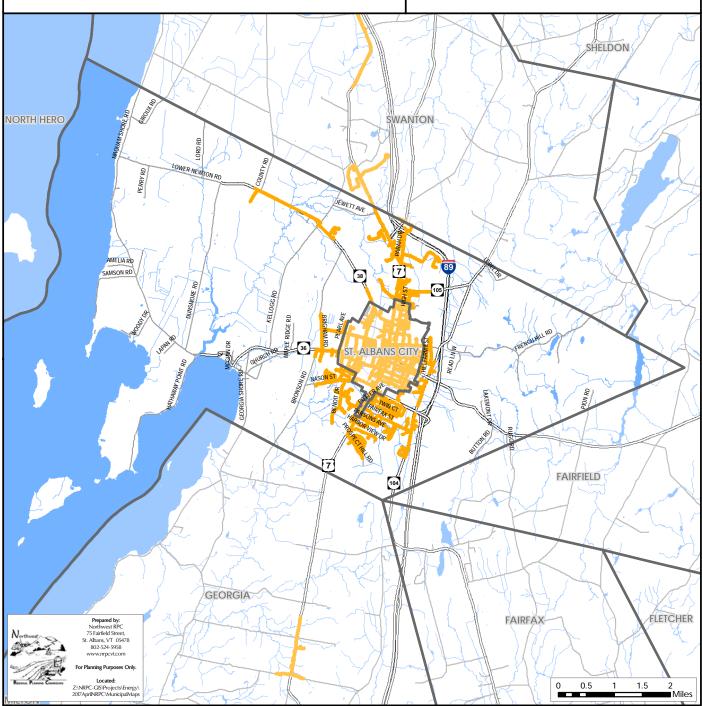
Note: Only generators 15kW are shown on the map. A full list of all generators is available

Solar Facility

Wind Facility

Natural Gas Lines

St. Albans Town, Vermont Act 174 The Energy Development Improvement Act of 2016


This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Natural Gas Line

Hydro

St. Albans Town, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "sitting maps."

Legend Substation

3 Phase Power Line Transmission Line

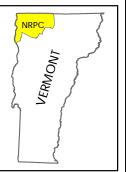
Designated Outstanding Resource Water

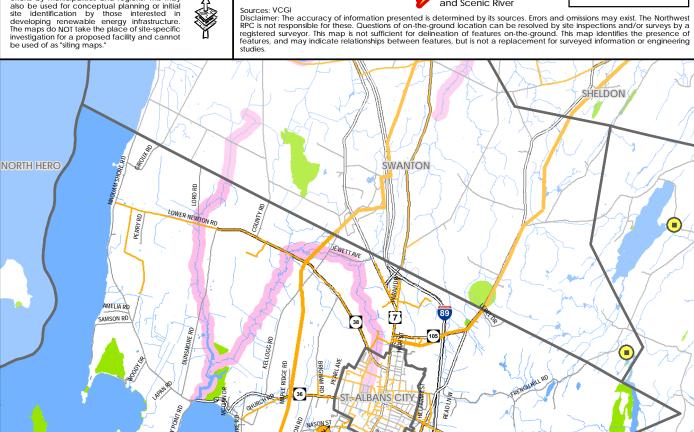
Known Constraint - Designated National Wild & Scenic River Possible Constraint -Stressed or Impaired Water

Possible Constraint - RINAs

Potential Hydroelectric Facility

< 50 kW Capacity

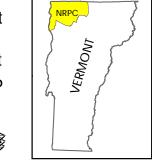

> 50 kW Capacity


High Hazard with < 50 kW Capacity

High Hazard with > 50 kW Capacity H

Operating Hydroelectric Facility Dam not on National Wild and Scenic River

> Dam on National Wild and Scenic River



Solar

St. Albans Town, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Substation

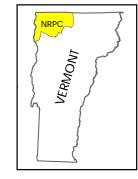
3 Phase Power Line

Transmission Line

1/2 Mile Buffer (3 Phase Power Line & Transmission Line)

Prime Solar/No Known Constraints

Base Solar/Possible Constraints

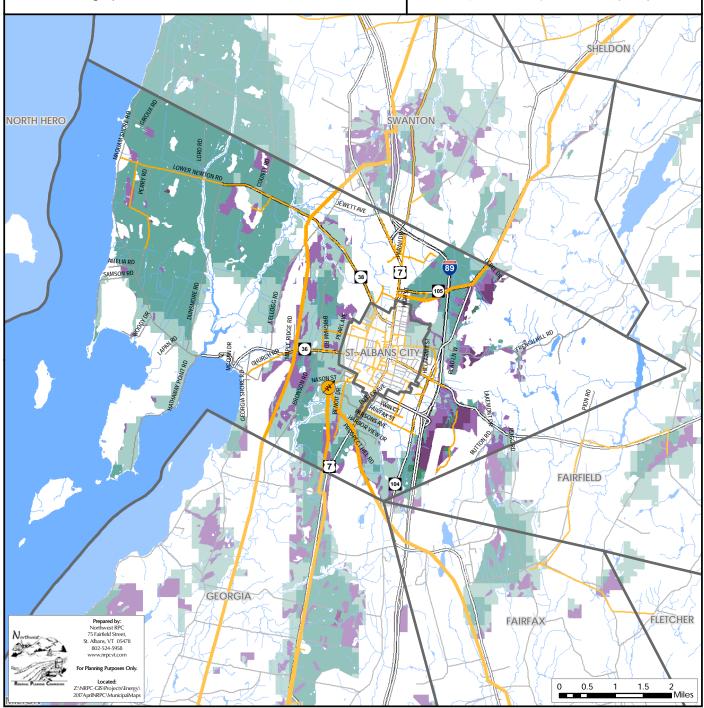


Wind

St. Albans Town, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend


3 Phase Power Line Transmission Line

Prime Wind

Areas of high wind potential and no known constraints.

Base Wind Areas of high wind potential and a presence of possible constraints.

Darker areas have higher wind speeds. Darker areas have higher wind speeds.

Woody Biomass

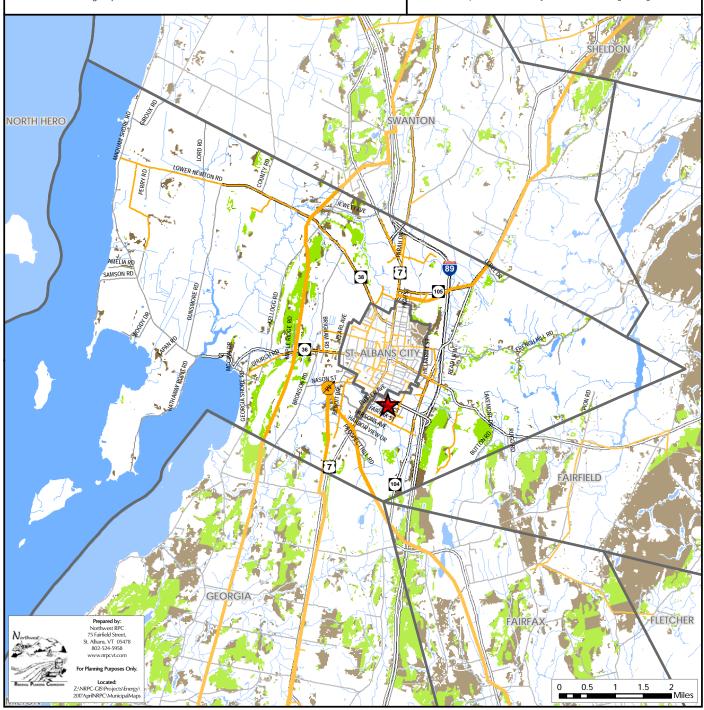
St. Albans Town, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipallities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Biomass System

Cow Power


Substation 3 Phase Power Line

Transmission Line Prime Woody Biomass/No Known Constraints

Base Woody Biomass/Possible Constraints

	All	All Generators in Municipality	ı Municipality			
Category	Sub - Category	Organization Type	Address	City	CPG Number	Capacity kW
Solar	Ground-mounted PV: Fixed Rack	Residential	870 Maquam Shore Rd	St. Albans	2684.00	11.90
Solar	Ground-mounted PV: Fixed Rack	Residential		St. Albans	6479.00	150.00
Solar	Ground-mounted PV: Fixed Rack	Residential	1045 Bronson Road	St. Albans	6577.00	9.10
Solar	Ground-mounted PV: Fixed Rack	Residential	11 Cedar Hill Drive	St. Albans	0.00	15.00
Solar	Ground-mounted PV: Fixed Rack	Residential	322 Maquam Shore Rd	St. Albans	0.00	200.00
Solar	Ground-mounted PV: Fixed Rack	Business	33 Rewes Drive	St. Albans	0.00	148.40
Solar	Ground-mounted PV: Fixed Rack	Residential		St. Albans	0.00	2200.00
Solar	Ground-mounted PV: Pole	Residential	136 Lapan Rd	St. Albans	2910.00	5.90
Solar	Ground-mounted PV: Pole	Residential	69 Little Country Rd	St. Albans	3552.00	7.50
Solar	Ground-mounted PV: Tracker	Institution	3649 Lower Newton Rd	St. Albans	0.00	500.00
Solar	Ground-mounted PV: Tracker	Residential	233 French Hill Road	St. Albans	6884.00	4.00
Solar	Ground-mounted PV: Tracker	Residential		St. Albans	6884.00	4.00
Solar	Hot Water	Residential	136 LaPan Road	St. Albans	0.00	0.00
Solar	Hot Water	Residential	172 Tranquility Lane	St. Albans	0.00	0.00
Solar	Roof-Mounted PV	Residential	2 Vt Rt 36	Fairfield	0.00	90.9
Solar	Roof-Mounted PV	Residential	4 Sullys Wy	St. Albans	2677.00	8.70
Solar	Roof-Mounted PV	Residential	32 Parsons Ave	St. Albans	5658.00	12.00
Solar	Roof-Mounted PV	Residential	335 Lake Rd	St. Albans	3208.00	3.10
Solar	Roof-Mounted PV	Residential	713 Maquam Shore Rd	St. Albans	3674.00	4.00
Solar	Roof-Mounted PV	Business	900 Industrial Park Road	St. Albans	1138.00	99.50
Solar	Roof-Mounted PV	Residential	71 French Hill Rd	St. Albans	3965.00	14.60
Solar	Roof-Mounted PV	Residential	505 Bingham Shore Road	St. Albans	3806.00	7.30
Solar	Roof-Mounted PV	Residential	29 Hill Farm Estates	St. Albans	2793.00	3.70
Solar	Roof-Mounted PV	Residential	913 W Shore Rd	St. Albans	2866.00	4.60
Solar	Roof-Mounted PV	Residential	2201 Bronson Rd	St. Albans	5839.00	10.00
Solar	Roof-Mounted PV	Residential	198 Button Rd	St. Albans	2952.00	4.20
Solar	Roof-Mounted PV	Residential	16 Prospect Hill Rd	St. Albans	3871.00	5.00

	A	All Generators in Municipality	Municipality			
Category	Sub - Category	Organization Type	Address	City	CPG Number	Capacity kW
Solar	Roof-Mounted PV	Residential	128 Loomis Lane	St. Albans	3879.00	90.9
Solar	Roof-Mounted PV	Residential	391 South Main	St. Albans	2734.00	4.30
Solar	Roof-Mounted PV	Residential	172 Tranquility Lane	St. Albans	3503.00	06.6
Solar	Roof-Mounted PV	Residential	35 Pearl Avenue	St. Albans	2697.00	3.70
Solar	Roof-Mounted PV	Residential	718 Maquam Shore Rd	St. Albans	1962.00	7.80
Solar	Roof-Mounted PV	Residential	870 Maquam Shore Rd	St. Albans	2684.00	4.20
Solar	Roof-Mounted PV	Residential	1 Wiley Place	St. Albans	2748.00	13.00
Solar	Roof-Mounted PV	Residential	11 Elizabeth St	St. Albans	3510.00	2.00
Solar	Roof-Mounted PV	Residential	183 Connor Rd	St. Albans	3893.00	4.00
Solar	Roof-Mounted PV	Residential	3 Potter Ave	St. Albans	3090.00	6.50
Solar	Roof-Mounted PV	Residential	344 Read Lane	St. Albans	5362.00	11.40
Solar	Roof-Mounted PV	Residential	21 Orchard Street	St. Albans	3238.00	5.00
Solar	Roof-Mounted PV	Residential	23 Hill Farm	St. Albans	3241.00	4.40
Solar	Roof-Mounted PV	Residential	24 Fairfax St	St. Albans	3738.00	3.80
Solar	Roof-Mounted PV	Residential	4 Potter Ave	St. Albans	3010.00	7.50
Solar	Roof-Mounted PV	Residential	17 Quarry Ct	St. Albans	3571.00	3.70
Solar	Roof-Mounted PV	Residential	64 Adirondak Drive	St. Albans	6170.00	4.00
Solar	Roof-Mounted PV	Residential	724 Maquam Shore Rd	St. Albans	2838.00	3.20
Solar	Roof-Mounted PV	Residential	339 Kellogg Rd	St. Albans	3822.00	7.80
Solar	Roof-Mounted PV	Residential	2072 Hathaway Point Rd	St. Albans	3940.00	8.50
Solar	Roof-Mounted PV	Residential	213 Fairfield Hill	St. Albans	2916.00	5.20
Solar	Roof-Mounted PV	Residential	45 Lebel Drive	St. Albans	801.00	3.60
Solar	Roof-Mounted PV	Residential	5 Parsons Ave	St. Albans	3580.00	3.10
Solar	Roof-Mounted PV	Residential	12 Lakemont Dr	St. Albans	4276.00	10.00
Solar	Roof-Mounted PV	Residential	763 Maquam Shore Rd	St. Albans	0.00	7.60
Solar	Roof-Mounted PV	Residential	33 Hill Farm Estates	St. Albans	0.00	3.60
Solar	Roof-Mounted PV	Residential	14 Hill Farm Estates	St. Albans	00.00	3.60

		All Generators in Municipality	Municipality			
Category	Sub - Category	Organization Type	Address	City	CPG Number	Capacity kW
Solar	Roof-Mounted PV	Residential	12 Twin Court	St. Albans	0.00	3.00
Solar	Roof-Mounted PV	Residential	1227 Route 104	St. Albans	0.00	4.20
Solar	Roof-Mounted PV	Residential	1407 Route 104	St. Albans	0.00	7.50
Solar	Roof-Mounted PV	Residential	24 Summit Place	St. Albans	7007.00	2.00
Solar	Roof-Mounted PV	Residential	93 Trombly Road	St. Albans	0.00	3.00
Solar	Roof-Mounted PV	Residential	14 Georgie Ave	St. Albans	0.00	3.00
Solar	Roof-Mounted PV	Residential	6 Marcel Drive	St. Albans	0.00	5.00
Solar	Roof-Mounted PV	Business	4 Victoria Lane	St. Albans	0.00	132.30
Solar	Roof-Mounted PV	Residential	6 Stoney Acre Dr	St. Albans	6772.00	4.00
Solar	Roof-Mounted PV	Residential	4 Bayview Drive	St. Albans	0.00	3.60
Solar	Roof-Mounted PV	Residential	3 Sunset Terrace	St. Albans	0.00	3.60
Solar	Roof-Mounted PV	Residential	86 Trombly Road	St. Albans	0.00	90.9
Solar	Roof-Mounted PV	Residential	12 Georgie Ave	St. Albans	0.00	90.9
Solar	Roof-Mounted PV	Residential	180 Wharf St	St. Albans	0.00	3.00
Solar	Roof-Mounted PV	Residential	3159 Kellogg Rd	St. Albans	6582.00	00.9
Solar	Roof-Mounted PV	Residential	122 Lone Oak Rd	St. Albans	6576.00	11.40
Solar	Roof-Mounted PV	Residential	29 Tanglewood Drive	St. Albans	7419.00	5.00
Solar	Roof-Mounted PV	Residential	48 Hill Farm Est	St. Albans	0.00	90.9
Solar	Roof-Mounted PV	Residential	12 Meadowbrook Lane	St. Albans	0.00	3.60
Solar	Roof-Mounted PV	Residential	15 Clyde Allen Drive	St. Albans	0.00	3.60
Solar	Roof-Mounted PV	Residential	3 Parsons Lane	St. Albans	0.00	3.60
Solar	Roof-Mounted PV	Residential	16 Allaire Drive	St. Albans	7307.00	7.60
Solar	Roof-Mounted PV	Residential	42 Hill Farm Estates	St. Albans	0.00	7.60
Solar	Roof-Mounted PV	Residential	17 Thorpe Ave Ext	St. Albans	0.00	90.9
Solar	Roof-Mounted PV	Residential	122 Lone Oak Rd	St. Albans	0.00	11.40
Solar	Roof-Mounted PV	Residential	15 Eastview Dr	St. Albans	0.00	3.00
Solar	Roof-Mounted PV	Residential	5 Ethel Court	St. Albans	00:00	90.9

	A	All Generators in Municipality	Municipality			
Category	Sub - Category	Organization Type	Address	City	CPG Number	Capacity kW
Solar	Roof-Mounted PV	Residential	2 Cody Drive	St. Albans	0.00	8.80
Solar	Roof-Mounted PV	Residential	2 Sunset Ter	St. Albans	0.00	00.9
Solar	Roof-Mounted PV	Residential	8 Hathaway Shore Ests.	St. Albans	6434.00	5.00
Solar	Roof-Mounted PV	Residential	13 Meadowbrook Lane	St. Albans	6432.00	5.00
Solar	Roof-Mounted PV	Residential	5 Georgie Avenue	St. Albans	0.00	3.00
Solar	Roof-Mounted PV	Residential	6 Wiley Place	St. Albans	7490.00	8.40
Solar	Roof-Mounted PV	Residential	810 Maquam Shore Rd	St. Albans	6593.00	7.50
Solar	Roof-Mounted PV	Residential	31 Hill Farm Est	St. Albans	0.00	3.00
Solar	Roof-Mounted PV	Residential	20 Adams St	St. Albans	0.00	3.60
Solar	Roof-Mounted PV	Residential	24 Tanglewood Dr	St. Albans	0.00	7.60
Solar	Roof-Mounted PV	Residential	10 Meadowbrook Lane	St. Albans	0.00	3.60
Solar	Roof-Mounted PV	Residential	16 Meadowbrook Lane	St. Albans	0.00	3.00
Solar	Roof-Mounted PV	Residential	8 Potter Avenue	St. Albans	0.00	3.80
Solar	Roof-Mounted PV	Residential	61 W Shore Rd	St. Albans	00.6089	5.00
Solar	Roof-Mounted PV	Residential	2609 Lower Newton St	St. Albans	0.00	3.60
Solar	Roof-Mounted PV	Residential	35 Clyde Allen Drive	St. Albans	0.00	3.00
Solar	Roof-Mounted PV	Residential	760 West Shore Road	St. Albans	0.00	2.00
Solar	Roof-Mounted PV	Residential	5 Bay View Drive	St. Albans	0.00	3.00
Solar	Roof-Mounted PV	Residential	7 Stoney Acre Drive	St. Albans	0.00	4.20
Solar	Roof-Mounted PV	Residential	34 Allaire Drive	St. Albans	0.00	3.60
Solar	Roof-Mounted PV	Residential	27 Hill Farm Estates	St. Albans	0.00	3.80
Solar	Roof-Mounted PV	Residential	269 Bingham Shore Rd	St. Albans	0.00	10.00
Solar	Roof-Mounted PV	Residential	38 Hill Farm Estates	St. Albans	0.00	7.60
Solar	Roof-Mounted PV	Residential	1704 Fairfax Road	St. Albans	0.00	5.00
Solar	Roof-Mounted PV	Residential	580 Maquam Shore Rd	St. Albans	0.00	14.00
Solar	Roof-Mounted PV	Residential	4847 Lower Newton Rd	St. Albans	0.00	00.9
Solar	Roof-Mounted PV	Business	5700 Lower Newton Rd	St. Albans	0.00	15.00

	A	Il Generators in Municipality	Municipality			
Category	Sub - Category	Organization Type	Address	City	CPG Number	Capacity kW
Solar	Roof-Mounted PV	Residential	1063 Maquam Shore Rd St. Albans	St. Albans	0.00	7.50

Municipal Analysis & Targets - Sheldon

The following is an explanation of the municipal energy data compiled by Northwest Regional Planning Commission (NRPC). The intent of the municipal energy data is to provide the municipalities with data required to ensure compliance with the requirements of Act 174 and "Enhanced Energy Planning" (24 V.S.A. 4352). The following tables contain data that estimates

current energy use and provides targets for future energy use across all sectors (transportation, heating, and electricity). It also sets targets for renewable energy generation within the municipality.

This data is meant to be a starting point for the municipality to begin planning its energy future and to talk about the changes that may need to occur within the municipality to ensure that local, regional and state energy goals are met. This includes the State of Vermont's goal to have 90% of all energy demand be met from renewable sources by 2050.

Figure 1 - Data Sources

ACS - American Community Survey
DOL -Vermont Department of Labor
DPS - Vermont Department of Public Service
EIA - Energy Information Administration
EVT - Efficiency Vermont
LEAP - Long-Range Energy Alternatives Planning
VEIC - Vermont Energy Investment Corporation
VTrans - Vermont Agency of Transportation

Data Sources

Estimates of current energy use consist primarily of data available from the American Community Survey (ACS), the Vermont Agency of Transportation (VTrans), the Vermont Department of Labor (DOL), and the Vermont Department of Public Service (DPS). Targets for future energy use are reliant upon the Long-range Energy Alternatives Planning (LEAP) analysis for the region completed the Vermont Energy Investment Corporation (VEIC). Targets for future energy generation have come from the regional planning commission and DPS. For more information on LEAP, see the Northwest Regional Energy Plan (www.nrpcvt.com). Targets for both future energy use and energy generation have been generally developed using a "top down" method of disaggregating regional data to the municipal level.

It is possible to develop "bottom up" data. For those municipalities interested in that approach, please see the Department of Public Service's Analysis and Targets Guidance (http://publicservice.vermont.gov/content/act-174-recommendations-and-determination-standards).

Please remember that the targets established by LEAP represent only one way to achieve energy goals. There may several other similar pathways that a municipality may choose to take in order to meet the 90x50 goal.

Below is a worksheet by worksheet explanation of the Municipal Template spreadsheet:

1. Municipal Data Summary

The following tables summarize all data that is required to be in a municipal plan if the plan is to meet the "determination" standards established by the Vermont Department of Public Service.

Table 1A: Current Municipal Transportation Ener	rgy Use
Transportation Data	Municipal Data
Total # of Vehicles (ACS 2011-2015)	1,879
Average Miles per Vehicle (Vtrans)	11,356
Total Miles Traveled	21,337,924
Realized MPG (2013 - VTrans 2015 Energy Profile)	18.6
Total Gallons Use per Year	1,147,200
Transportation BTUs (Billion)	138
Average Cost per Gallon of Gasoline (RPC)	2.31
Gasoline Cost per Year	2,650,032

This table uses data from the American Community Survey (ACS) and Vermont Agency of Transportation (VTrans) to calculate current transportation energy use and energy costs in the municipality.

Tal	ble 1B: Current M	unicipal Resider	itial Heating Energy	Use
Fuel Source	Municipal Households (ACS 2011-2015)	% of Municipal Households	Municipal Square Footage Heated	Municipal BTU (in Billions)
Natural Gas	66	7.4%	125,664	8
Propane	151	17.0%	267,792	16
Electricity	13	1.5%	24,752	1
Fuel Oil	341	38.4%	587,312	35
Coal	0	0.0%	0	0
Wood	289	32.5%	539,696	32
Solar	0	0.0%	0	0
Other	28	3.2%	49,088	3
No Fuel	0	0.0%	0	0
Total	888	100.0%	1,594,304	96

This table displays data from the ACS that estimates current municipal residential heating energy use.

Table 10	C: Current Munic	cipal Commercial En	ergy Use
	Commercial Establishments in Municipality (VT DOL)	Estimated Thermal Energy BTUs per Commercial Establishment (in Billions) (VDPS)	Estimated Thermal Energy BTUs by Commercial Establishments in Municipality (in Billions)
Municipal Commercial Energy Use	17	0.725	12

The table uses data available from the Vermont Department of Labor (VT DOL) and the Vermont Department of Public Service (DPS) to estimate current municipal commercial establishment energy use in the municipality.

Table 1D: Current Electricit	y Use		
Use Sector	Current Electricity Use		
Residential (kWh) 7,982,536			
Commercial and Industrial (kWh)	4,361,745		
Total (kWh)	12,344,281		

This table displays current electricity use within the municipality. This data is available from Efficiency Vermont (EVT).

Table 1E: Residential Thermal Eff	ciency Tar	gets	
	2025	2035	2050
"Residential - Increased Efficiency and Conservation (% of municipal households to be weatherized)"	5%	16%	78%

This table displays targets for thermal efficiency of residential structures. The data is based on a methodology developed by DPS using data available from the regional Long-range Energy Alternatives Planning (LEAP) analysis and ACS. The data in this table represents the percentage of municipal households that will need to be weatherized in the target years. The target is cumulative.

Table 1F: Commercial Thermal E	fficiency To	arget	
	2025	2035	2050
"Commercial - Increased Efficiency and Conservation (% of commercial establishments to be weatherized)"	25%	25%	73%

This table shows the same information as Table 1E, but sets a target for commercial thermal efficiency and weatherization. Information from the VT DOL is required to complete this target. The target is cumulative.

Table 1G: Thermal Fuel Switching (Residential and Commercial) – Wood Systems

	2025	2035	2050
New Efficient Wood Heat Systems (in units)	3	8	36

This table provides a target for new wood heating systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 1H: Thermal Fuel Switching (Residential and Commercial) – Heat Pumps

	2025	2035	2050
New Heat Pumps (in units)	91	217	429

This table provides a target for new heat pump systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 11: Electricity Efficiency Targets

	2025	2035	2050
Increase Efficiency and Conservation (BTUs)	25.2%	48.3%	100.7%

Data in this table displays a target for increased electricity efficiency and conservation during the target years. This target will be met through conversions to high efficiency appliances, electric heat pumps, and electric light-duty vehicles. These targets were developed using regional LEAP analysis. The target is cumulative.

Table 1J: Use of Renewables - Transportation

	2025	2035	2050
Renewable Energy Use - Transportation (BTUs)	6.6%	26.0%	88.1%

This data displays targets for the percentage of transportation energy use coming from renewable sources during each target year. This target will be met through conversions to electric light-duty vehicles and biodiesel heavy-duty vehicles. This data was developed using the LEAP analysis. The target is cumulative.

Table 1K: Use of Renewable	s – Heating	ı	
	2025	2035	2050
Renewable Energy Use - Heating (BTUs)	46.7%	60.4%	88.5%

This data displays targets for the percentage of heating energy use coming from renewable sources during each target year. This target will be met through conversions to electric heat pumps and high efficiency wood heating systems. This data was developed using information from the LEAP analysis. The target is cumulative.

Table 1L: Use of Renewables	– Electricit	у	
	2025	2035	2050
Renewable Energy Use - Electricity (MWh)	3,948.2	7,896.4	11,964.2

This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1Q. The target is cumulative.

Table 1M: Transportation Fuel Switching Ta	argets - Ele	ctric Vehic	cles
	2025	2035	2050
Electric Vehicles	164	1231	2929

This tables displays a target for switching from fossil fuel based vehicles (gasoline and diesel) to electric vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

Table 1N: Transportation Fuel Switchin	g Targets -	- Biodiesel	
	2025	2035	2050
Biodiesel Vehicles	162	321	612

This tables displays a target for switching from fossil fuel based vehicles to biodiesel-powered vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

Table 10: Existir	ng Renewable Generat	ion
Renewable Type	MW	MWh
Solar	2.50	3066.00
Wind	0.00	0.00
Hydro	26.38	92435.52
Biomass	0.83	3375.01
Other	0.00	0.00
Total Existing Generation	29.71	98876.53

Table 10 shows existing renewable generation in the municipality, in MW and MWh, based on information available from the Vermont Department of Public Service.

Table 1P: Renewable	Generation Potentia	ıl
Renewable Type	MW	MWh
Rooftop Solar	1	1,193
Ground-mounted Solar	959	1,176,112
Wind	731	2,241,576
Hydro	0	0
Biomass and Methane	0	0
Other	0	0
Total Renewable Generation Potential	1,691	3,418,881

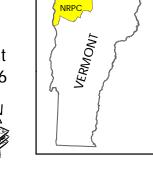
Renewable generation potential is based on mapping completed by the regional planning commission that is based on the Municipal Determination Standards and associated guidance documents developed by DPS. The renewable generation potential is expressed in MW and MWh by the type of renewable resource (solar, wind, hydro, etc.).

Table 1Q: Renewable Generation Targets

	2025	2035	2050
Total Renewable Generation Target (in MWh)	3,948.19	7,896.38	11,964.22

This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1L.

Table 1R: Sufficient Land?


	Y/N
Solar	Υ
Wind	Υ

This table shows whether or not there is sufficient land in the municipality to meet the renewable generation targets based on the renewable generation potential in the municipality.

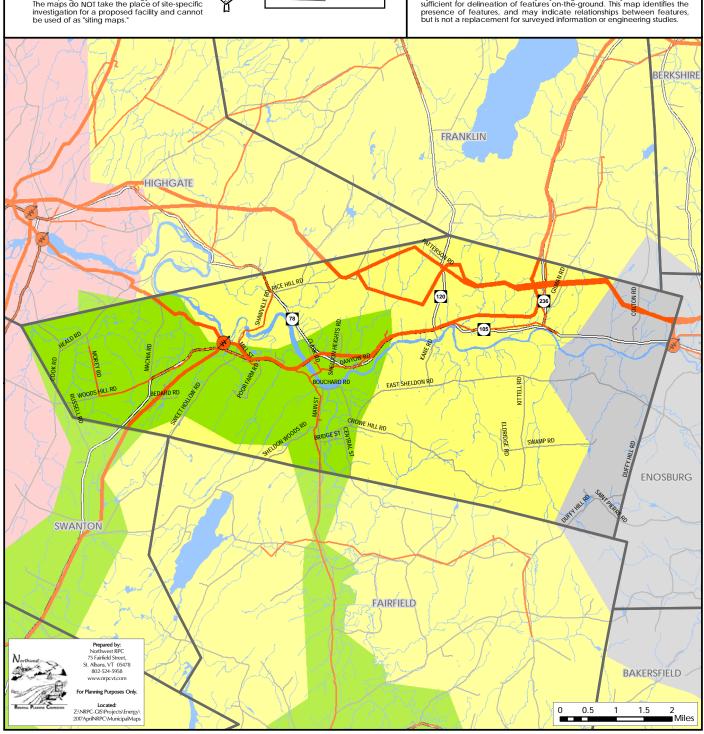
Utility Service Areas

Sheldon, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may enors by municipalities and regions. Inis may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

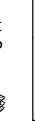
Utility Service Area Features Green Mountain Power

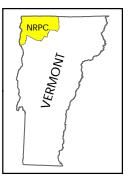


3 Phase Power Line

Swanton Village Electric Vermont Electric Co-op

Transmission Line

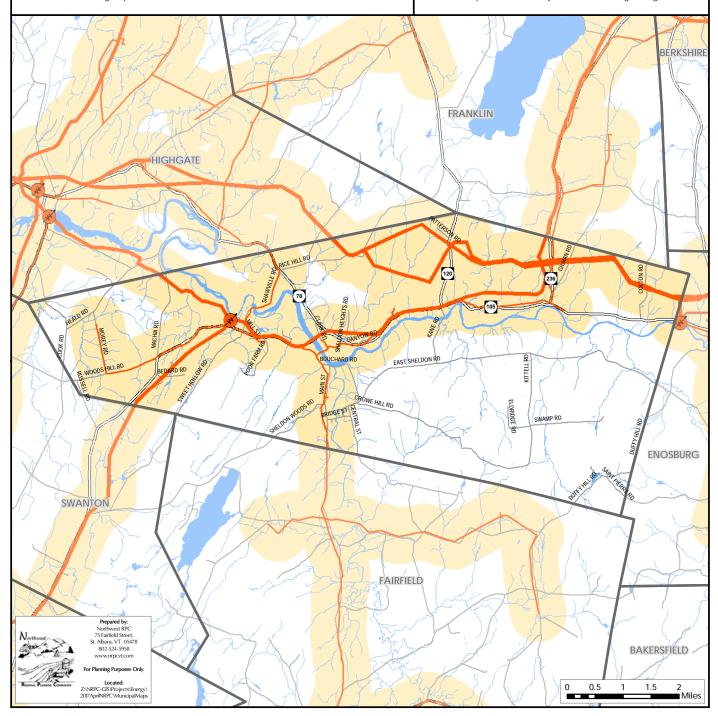

Enosburg Falls Electric



Transmission & 3 Phase Power Infrastructure

Sheldon, Vermont Act 174 The Energy Development Improvement Act of 2016

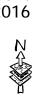
This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."


Legend

Substation

3 Phase Power Line

Transmission Line

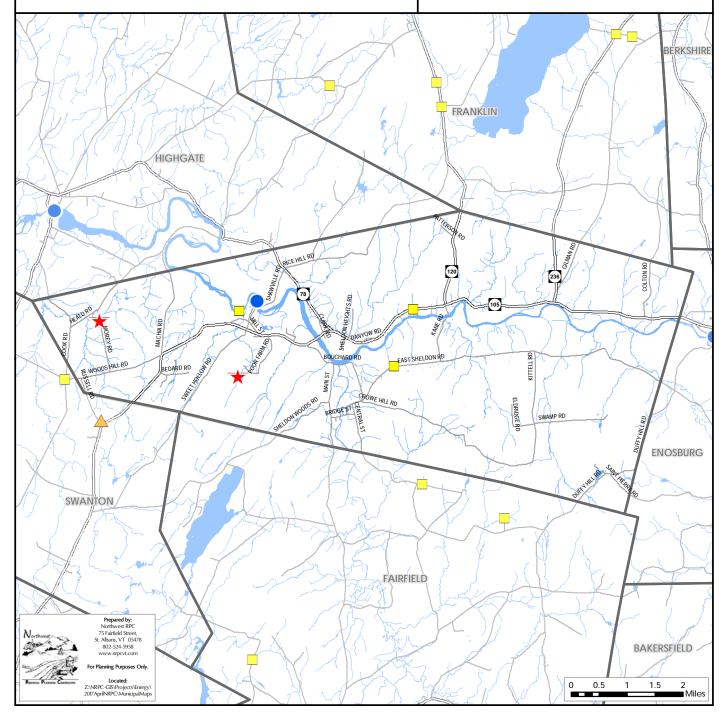

1/2 Mile Buffer (3 Phase Power Line & Transmission Line)

Existing Generation Facilities

Sheldon, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend


Biomass Facility

Hydro Facility

Solar Facility

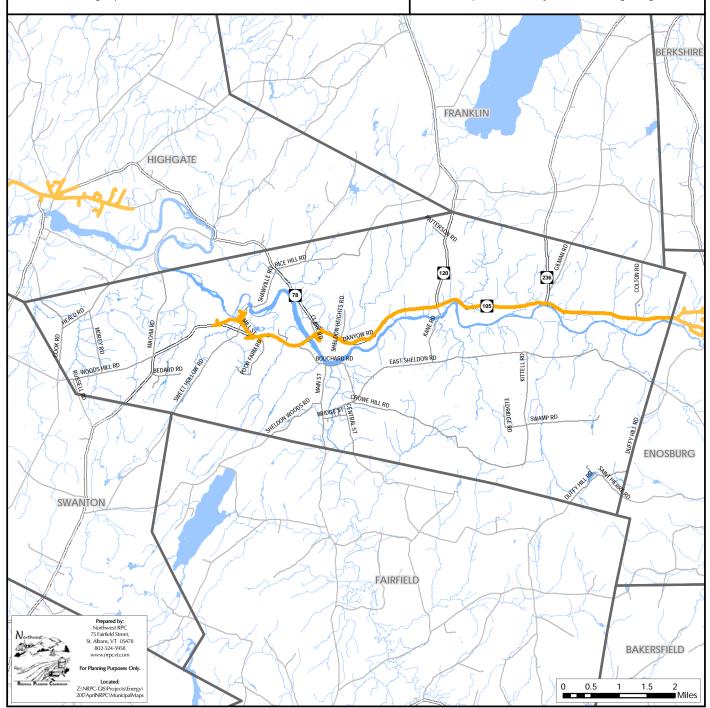
Note: Only generators 15kW are shown on the map. A full list of all generators is available.

Wind Facility



Natural Gas Lines

Sheldon, Vermont Act 174 The Energy Development Improvement Act of 2016


This map and the corresponding data is intended to be used to inform energy planning efforts by municipallities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Natural Gas Line

Hydro

Sheldon, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend Substation

3 Phase Power Line

Designated Outstanding Resource Water

Known Constraint - Designated National Wild & Scenic River Possible Constraint -

Stressed or Impaired Water
Possible Constraint - RINAs

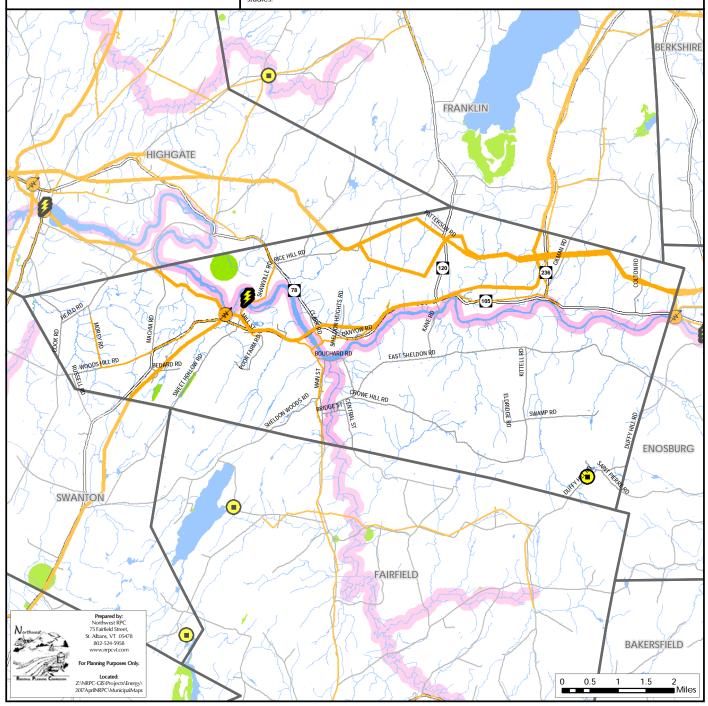
Potential Hydroelectric Facility

< 50 kW Capacity

> 50 kW Capacity

High Hazard with
< 50 kW Capacity

High Hazard with > 50 kW Capacity


Capacity

Operating Hydroelectric Facility

Dam not on National Wild and Scenic River

Dam on National Wild and Scenic River

Solar Legend Substation Sheldon, Vermont 3 Phase Power Line Act 174 Transmission Line 1/2 Mile Buffer (3 Phase Power Line & Transmission Line) The Energy Development Prime Solar/No Known Constraints Improvement Act of 2016 Base Solar/Possible Constraints This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps." Sources: VCGI Disclaimer: The accuracy of information presented is determined by its sources. Errors and omissions may exist. The Northwest RPC is not responsible for these. Questions of on-the-ground location can be resolved by site inspections and/or surveys by a registered surveyor. This map is not sufficient for delineation of features on-the-ground. This map identifies the presence of features, and may indicate relationships between features, but is not a replacement for surveyed information or engineering studies. ERKSHIRE FRANKLIN ENOSBURG FAIRFIELD Albans, VT 05478 802-524-5958 BAKERSFIELD or Planning Purposes Only. Located: Z:\NRPC-GIS\Projects\Energy\ 2017AprilNRPC\MunicipalMaps

Miles

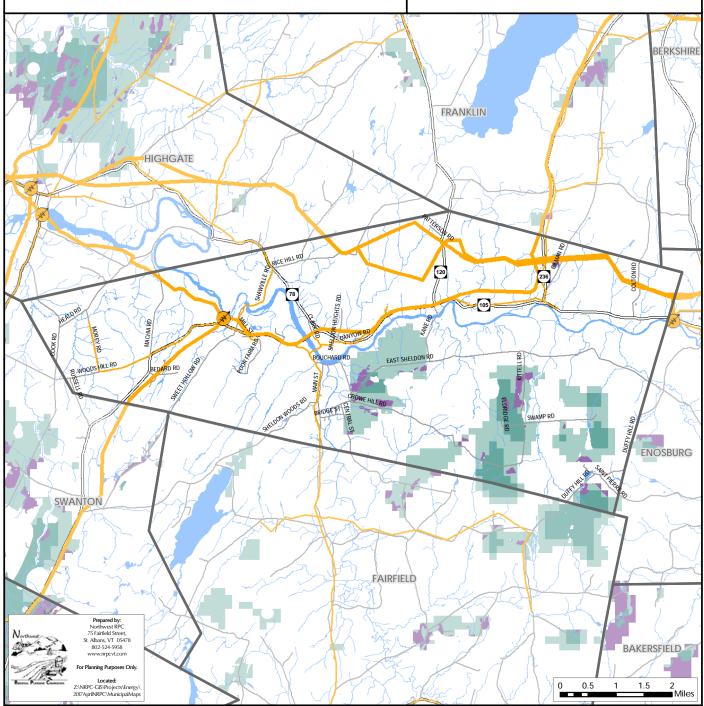
Wind

Sheldon, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipallities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

📈 Substation


3 Phase Power Line Transmission Line

Prime Wind Areas of high wind potential and no

known constraints. Darker areas have higher wind speeds.

Base Wind Areas of high wind potential and a presence of possible constraints.

Darker areas have higher wind speeds.

Woody Biomass

Sheldon, Vermont Act 174 The Energy Development Improvement Act of 2016

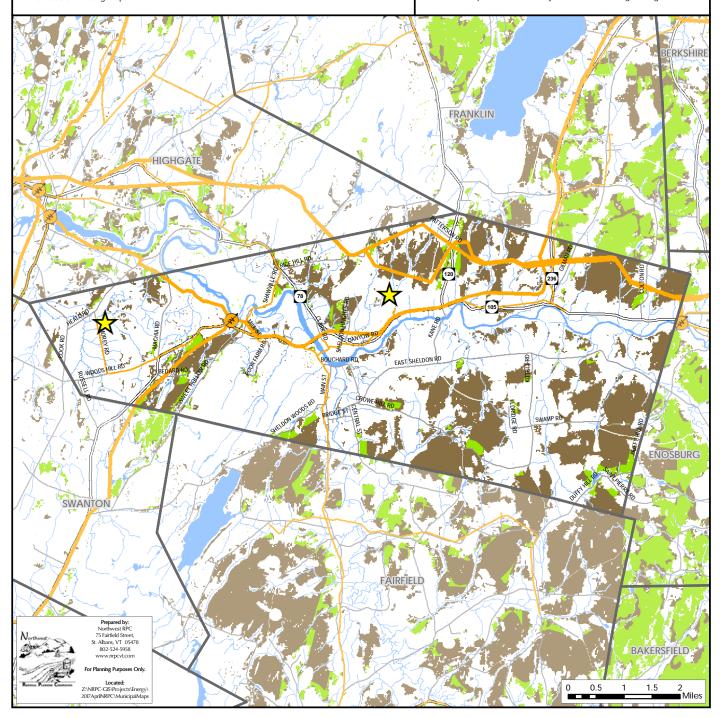
This map and the corresponding data is intended to be used to inform energy planning efforts by municipallities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Biomass System

Cow Power

3 Phase Power Line


Transmission Line

Prime Woody Biomass/No Known Constraints

Base Woody Biomass/Possible Constraints

	IIA	All Generators in Municipality	Municipality			
Category	Sub - Category	Organization Type	Address	City	CPG Number	Capacity kW
Biomass	Anaerobic Digester	Farm	962 Morey Road	Sheldon		009
Biomass	Anaerobic Digester	Farm	5893 Route 105	Sheldon		225
Hydro	Hydropower	Business		Sheldon		26380
Solar	Ground-mounted PV: Fixed Rack	Residential	1321 Main St	Sheldon	3389	8.2
Solar	Ground-mounted PV: Fixed Rack	Business	Heather Lane	Sheldon		2200
Solar	Ground-mounted PV: Fixed Rack	Residential	567 East Sheldon Road	Sheldon	7211	15
Solar	Ground-mounted PV: Fixed Rack	Residential	1660 Sweet Hollow Rd	Sheldon	7036	10
Solar	Ground-mounted PV: Pole	Residential	898 VT-105	Sheldon	16-0902	7.6
Solar	Ground-mounted PV: Tracker	Business	6212 VT-105	Sheldon		148.2
Solar	Roof-Mounted PV	Residential	206 Pleasant St	Sheldon	3490	4
Solar	Roof-Mounted PV	Residential	515 Crowe Hill Road	Sheldon	2932	7.4
Solar	Roof-Mounted PV	Residential	1012 Sweet Hollow Rd	Sheldon	1882	6.7
Solar	Roof-Mounted PV	Residential	1310 Sweet Hollow Rd	Sheldon	2968	2
Solar	Roof-Mounted PV	Residential	388 Crowe Hill Road	Sheldon	2914	5.2
Solar	Roof-Mounted PV	Residential	1495 Rice Hill Rd	Sheldon	2862	6.5
Solar	Roof-Mounted PV	Residential	1231 VT Route 120	Sheldon	5849	œ
Solar	Roof-Mounted PV	Residential	132 SEVERANCE RD	Sheldon	2623	3.7
Solar	Roof-Mounted PV	Residential	698 Rice Hill Rd	Sheldon	5770	7
Solar	Roof-Mounted PV	Residential	332 Rice Hill Rd	Sheldon	3712	3.4
Solar	Roof-Mounted PV	Residential	580 Mill St	Sheldon	2806	4.3
Solar	Roof-Mounted PV	Residential	377 Pleasant Street	Sheldon	7159	2
Solar	Roof-Mounted PV	Residential	285 Colton Road	Sheldon	16-0094	10
Solar	Roof-Mounted PV	Residential	489 Pleasant St	Sheldon	16-0736	3.5
Solar	Roof-Mounted PV	Residential	263 Cook Rd	Sheldon		9
Solar	Roof-Mounted PV	Residential	193 Forest Heights	Sheldon	16-1607	8.2
Solar	Roof-Mounted PV	Residential	353 Trophy Lane	Sheldon	16-1213	5

Municipal Analysis & Targets - South Hero

The following is an explanation of the municipal energy data compiled by Northwest Regional Planning Commission (NRPC). The intent of the municipal energy data is to provide the municipalities with data required to ensure compliance with the requirements of Act 174 and "Enhanced Energy Planning" (24 V.S.A. 4352). The following tables contain data that estimates

current energy use and provides targets for future energy use across all sectors (transportation, heating, and electricity). It also sets targets for renewable energy generation within the municipality.

This data is meant to be a starting point for the municipality to begin planning its energy future and to talk about the changes that may need to occur within the municipality to ensure that local, regional and state energy goals are met. This includes the State of Vermont's goal to have 90% of all energy demand be met from renewable sources by 2050.

Figure 1 - Data Sources

ACS - American Community Survey
DOL -Vermont Department of Labor
DPS - Vermont Department of Public Service
EIA - Energy Information Administration
EVT - Efficiency Vermont
LEAP - Long-Range Energy Alternatives Planning
VEIC - Vermont Energy Investment Corporation
VTrans - Vermont Agency of Transportation

Data Sources

Estimates of current energy use consist primarily of data available from the American Community Survey (ACS), the Vermont Agency of Transportation (VTrans), the Vermont Department of Labor (DOL), and the Vermont Department of Public Service (DPS). Targets for future energy use are reliant upon the Long-range Energy Alternatives Planning (LEAP) analysis for the region completed the Vermont Energy Investment Corporation (VEIC). Targets for future energy generation have come from the regional planning commission and DPS. For more information on LEAP, see the Northwest Regional Energy Plan (www.nrpcvt.com). Targets for both future energy use and energy generation have been generally developed using a "top down" method of disaggregating regional data to the municipal level.

It is possible to develop "bottom up" data. For those municipalities interested in that approach, please see the Department of Public Service's Analysis and Targets Guidance (http://publicservice.vermont.gov/content/act-174-recommendations-and-determination-standards).

Please remember that the targets established by LEAP represent only one way to achieve energy goals. There may several other similar pathways that a municipality may choose to take in order to meet the 90x50 goal.

Below is a worksheet by worksheet explanation of the Municipal Template spreadsheet:

1. Municipal Data Summary

The following tables summarize all data that is required to be in a municipal plan if the plan is to meet the "determination" standards established by the Vermont Department of Public Service.

Table 1A: Current Municipal Transportation Energy Use			
Transportation Data	Municipal Data		
Total # of Passenger Vehicles (ACS 2011-2015)	1,430		
Average Miles per Vehicle (Vtrans)	11,356		
Total Miles Traveled	16,239,080		
Realized MPG (2013 - VTrans 2015 Energy Profile)	18.6		
Total Gallons Use per Year	873,069		
Transportation BTUs (Billion)	105		
Average Cost per Gallon of Gasoline (RPC)	2.31		
Gasoline Cost per Year	2,016,789		

This table uses data from the American Community Survey (ACS) and Vermont Agency of Transportation (VTrans) to calculate current transportation energy use and energy costs in the municipality.

Table 1B: Current Municipal Residential Heating Energy Use					
Fuel Source	Municipal Households (ACS 2011-2015)	% of Municipal Households	Municipal Square Footage Heated	Municipal BTU (in Billions)	
Natural Gas	11	1.6%	20,944	1	
Propane	220	31.6%	392,128	24	
Electricity	31	4.4%	47,056	3	
Fuel Oil	322	46.2%	561,696	34	
Coal	0	0.0%	0	0	
Wood	81	11.6%	134,512	8	
Solar	0	0.0%	0	0	
Other	32	4.6%	58,112	3	
No Fuel	0	0.0%	0	0	
Total	697	100.0%	1,214,448	73	

This table displays data from the ACS that estimates current municipal residential heating energy use.

Table 1C: Current Municipal Commercial Energy Use					
	Commercial Establishments in Municipality (VT DOL)	Estimated Thermal Energy BTUs per Commercial Establishment (in Billions) (VDPS)	Estimated Thermal Energy BTUs by Commercial Establishments in Municipality (in Billions)		
Municipal Commercial Energy Use	48	0.725	35		

The table uses data available from the Vermont Department of Labor (VT DOL) and the Vermont Department of Public Service (DPS) to estimate current municipal commercial establishment energy use in the municipality.

Table 1D: Current Electricity Use				
Use Sector Current Electricity Use				
Residential (kWh)	6,265,571			
Commercial and Industrial (kWh)	12,315,515			
Total (kWh)	18,581,087			

This table displays current electricity use within the municipality. This data is available from Efficiency Vermont (EVT).

Table 1E: Residential Thermal Efficiency Targets			
	2025	2035	2050
"Residential - Increased Efficiency and Conservation (% of municipal households to be weatherized)"	5%	16%	78%

This table displays targets for thermal efficiency of residential structures. The data is based on a methodology developed by DPS using data available from the regional Long-range Energy Alternatives Planning (LEAP) analysis and ACS. The data in this table represents the percentage of municipal households that will need to be weatherized in the target years. The target is cumulative.

Table 1F: Commercial Thermal Efficiency Target			
	2025	2035	2050
"Commercial - Increased Efficiency and Conservation (% of commercial establishments to be weatherized)"	25%	25%	73%

This table shows the same information as Table 1E, but sets a target for commercial thermal efficiency and weatherization. Information from the VT DOL is required to complete this target. The target is cumulative.

Table 1G: Thermal Fuel Switching (Residential and Commercial) – Wood Systems

	2025	2035	2050
New Efficient Wood Heat Systems (in units)	-1	-7	5

This table provides a target for new wood heating systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 1H: Thermal Fuel Switching (Residential and Commercial) – Heat Pumps

	2025	2035	2050
New Heat Pumps (in units)	84	191	358

This table provides a target for new heat pump systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 11: Electricity Efficiency Targets

	2025	2035	2050
Increase Efficiency and Conservation (BTUs)	25.2%	48.3%	100.7%

Data in this table displays a target for increased electricity efficiency and conservation during the target years. This target will be met through conversions to high efficiency appliances, electric heat pumps, and electric light-duty vehicles. These targets were developed using regional LEAP analysis. The target is cumulative.

Table 1J: Use of Renewables - Transportation

	2025	2035	2050
Renewable Energy Use - Transportation (BTUs)	11.2%	34.0%	91.2%

This data displays targets for the percentage of transportation energy use coming from renewable sources during each target year. This target will be met through conversions to electric light-duty vehicles and biodiesel heavy-duty vehicles. This data was developed using the LEAP analysis. The target is cumulative.

Table 1K: Use of Renewables – Heating				
	2025	2035	2050	
Renewable Energy Use - Heating (BTUs)	44.5%	57.6%	85.3%	

This data displays targets for the percentage of heating energy use coming from renewable sources during each target year. This target will be met through conversions to electric heat pumps and high efficiency wood heating systems. This data was developed using information from the LEAP analysis. The target is cumulative.

Table 1L: Use of Renewables – Electricity				
2025 2035 2050				
Renewable Energy Use - Electricity (MWh)	3,606.1	7,212.1	10,927.4	

This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1Q. The target is cumulative.

Table TM: Transportation Fuel Switching Ta	argets – Ele	ctric venic	ies
	2025	2035	2050

	2025	2035	2050
Electric Vehicles	125	937	2229

This tables displays a target for switching from fossil fuel based vehicles (gasoline and diesel) to electric vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

Table 1N: Transportation Fuel Switching Targets - Biodiesel

	2025	2035	2050
Biodiesel Vehicles	285	569	1100

This tables displays a target for switching from fossil fuel based vehicles to biodiesel-powered vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

Table 10: Existir	ng Renewable Generat	tion
Renewable Type	MW	MWh
Solar	0.39	478.30
Wind	0.01	15.33
Hydro	0.00	0.00
Biomass	0.00	0.00
Other	0.00	0.00
Total Existing Generation	0.40	493.63

Table 10 shows existing renewable generation in the municipality, in MW and MWh, based on information available from the Vermont Department of Public Service.

Table 1P: Renewable	Generation Potentia	ıl .
Renewable Type	MW	MWh
Rooftop Solar	1	1,149
Ground-mounted Solar	515	631,111
Wind	1,285	3,939,726
Hydro	0	0
Biomass and Methane	0	0
Other	0	0
Total Renewable Generation Potential	1,801	4,571,986

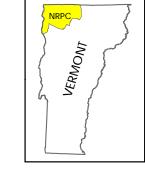
Renewable generation potential is based on mapping completed by the regional planning commission that is based on the Municipal Determination Standards and associated guidance documents developed by DPS. The renewable generation potential is expressed in MW and MWh by the type of renewable resource (solar, wind, hydro, etc.).

Table 10: Renewable Generation Targets

	2025	2035	2050
Total Renewable Generation Target (in MWh)	3,606.06	7,212.12	10,927.45

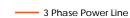
This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1L.

Table 1R: Sufficient Land?


	Y/N
Solar	Υ
Wind	Υ

This table shows whether or not there is sufficient land in the municipality to meet the renewable generation targets based on the renewable generation potential in the municipality.

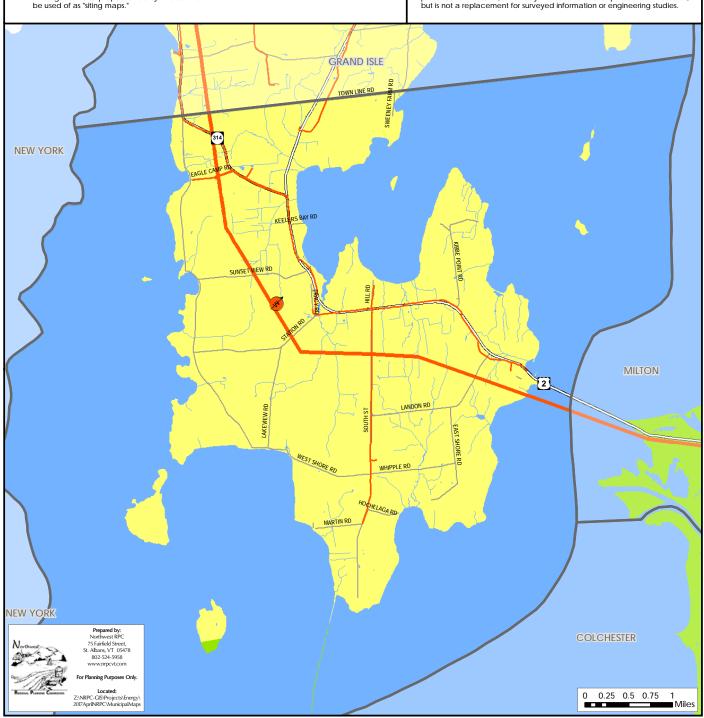
Utility Service Areas


South Hero, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "sitting maps."

Utility Service Area Features

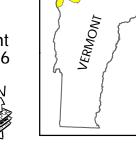
Swanton Village Electric


Vermont Electric Co-op

Transmission Line

Substation

Enosburg Falls Electric

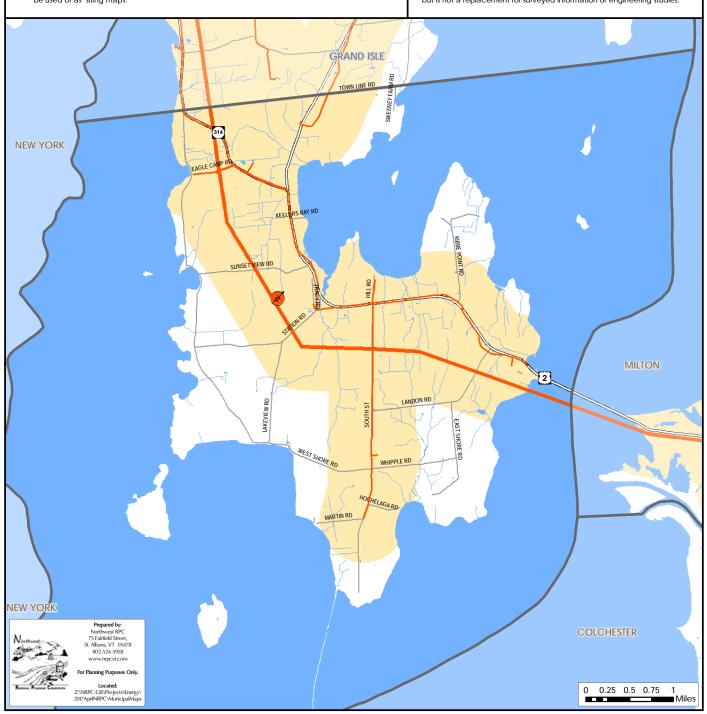

Legend

Transmission & 3 Phase **Power Infrastructure**

South Hero, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "sitting maps."

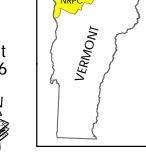
NRPC,


Legend

Substation

Transmission Line

3 Phase Power Line

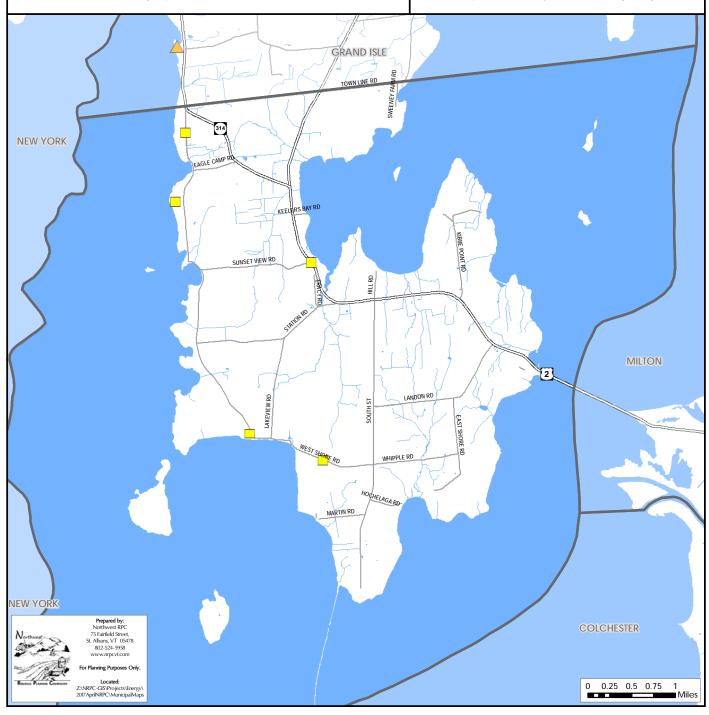

1/2 Mile Buffer (3 Phase Power Line & Transmission Line)

Existing Generation Facilities

South Hero, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend


Biomass Facility

Hydro Facility

Note: Only generators 15kW are shown on the map. A full list of all generators is

Solar Facility

Wind Facility

Hydro

South Hero, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Substation

3 Phase Power Line
Transmission Line

Designated Outstanding Resource Water

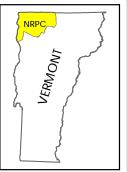
Known Constraint - Designated National Wild & Scenic River

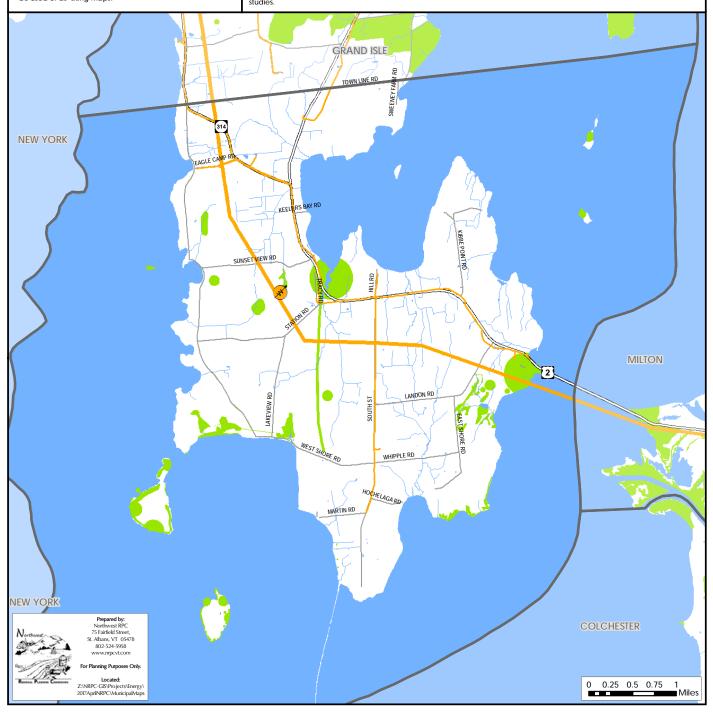
Possible Constraint -Stressed or Impaired Water

Possible Constraint - RINAs

Potential Hydroelectric Facility

< 50 kW Capacity</p>


> 50 kW Capacity


High Hazard with < 50 kW Capacity High Hazard with > 50 kW Capacity

Operating Hydroelectric Facility

Dam not on National Wild and Scenic River

Dam on National Wild and Scenic River

Northwest Regional Energy Plan 2017 Solar Legend Substation NRPC, South Hero, Vermont 3 Phase Power Line Act 174 Transmission Line The Energy Development 1/2 Mile Buffer (3 Phase Power Line & Transmission Line) Prime Solar/No Known Constraints Improvement Act of 2016 Base Solar/Possible Constraints This map and the corresponding data is intended to be used to inform energy planning efforts by municipallities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps." Sources: VCGI Disclaimer: The accuracy of information presented is determined by its sources. Errors and omissions may exist. The Northwest RPC is not responsible for these. Questions of on-the-ground location can be resolved by site inspections and/or surveys by a registered surveyor. This map is not sufficient for delineation of features on-the-ground. This map identifies the presence of features, and may indicate relationships between features, but is not a replacement for surveyed information or engineering studies. GRAND ISLE **NEW YORK** MILTON

COLCHESTER

0 0.25 0.5 0.75

Located: Z:\NRPC-GIS\Projects\Energy\ 2017AprilNRPC\MunicipalMaps

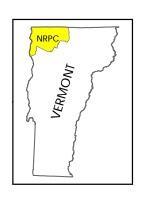
NEW YORK

Wind

South Hero, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Substation 3 Phase Power Line Transmission Line Prime Wind Areas of high wind potential and no known constraints. Darker areas have higher wind speeds. Sources: VCGI Disclaimer: The accuracy of information presented is determined by its sources. Errors and omissions may exist. The Northwest RPC is not responsible for these. Questions of on-the-ground. Inst map identifies the presence of features, and may indicate relationships between features, but is not a replacement for surveyed information or engineering studies.


GRAND ISLE **NEW YORK** MILTON NEW YORK COLCHESTER Located: Z:\NRPC-GIS\Projects\Energy\ 2017AprilNRPC\MunicipalMaps 0 0.25 0.5 0.75 1 Miles

Woody Biomass

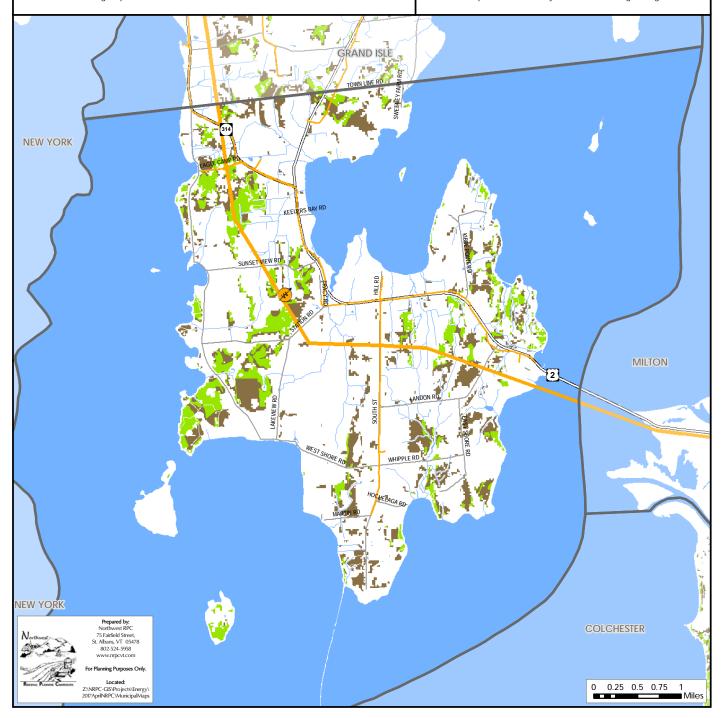
South Hero, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Biomass System

Cow Power


Substation 3 Phase Power Line

Transmission Line

Prime Woody Biomass/No Known Constraints

Base Woody Biomass/Possible Constraints

	All	All Generators in Municipality	Municipality			
Category	Sub - Category	Organization Type	Address	City	CPG Number	Capacity kW
Solar	Ground-mounted PV: Fixed Rack	Residential	14 Whipple Rd	South Hero	1740	2.7
Solar	Ground-mounted PV: Fixed Rack	Residential	16 Hall Road	South Hero	3063	4
Solar	Ground-mounted PV: Fixed Rack	Residential	14 Narrows Road	South Hero	206	2.2
Solar	Ground-mounted PV: Fixed Rack	Residential	565 West Shore Road	South Hero	2960	22.2
Solar	Ground-mounted PV: Pole	Residential	561 West Shore Road	South Hero	2977	8.9
Solar	Ground-mounted PV: Pole	Residential	549 Rt 2	South Hero	2345	3.6
Solar	Ground-mounted PV: Tracker	Residential	76 Lakeview Road	South Hero	414	4
Solar	Ground-mounted PV: Tracker	Residential	142 Ferry Rd	South Hero	3986	10.8
Solar	Ground-mounted PV: Tracker	Residential	135 Kibbie Point Rd	South Hero	5078	17
Solar	Ground-mounted PV: Tracker	Residential	134 East Shore Road	South Hero		4
Solar	Ground-mounted PV: Tracker	Residential	316 South Street	South Hero	7288	12
Solar	Hot Water	Residential	103 Lakeview Road	South Hero		
Solar	Hot Water	Residential	153 West Shore Rd	South Hero		
Solar	Hot Water	Residential	224 South Street	South Hero		
Solar	Hot Water	Residential	255 West Shore Rd	South Hero		
Solar	Hot Water	Residential	33 Gifford Lane	South Hero		
Solar	Hot Water	Residential	366 Route 2	South Hero		
Solar	Hot Water	Residential	380 South Street	South Hero		
Solar	Hot Water	Residential	389 South Street	South Hero		
Solar	Hot Water	Residential	42 Sweeney Farm Road	South Hero		
Solar	Hot Water	Residential	565 West Shore Road	South Hero		
Solar	Hot Water	Residential	8 Whipple Road	South Hero		
Solar	Hot Water	Residential	82 Lakeview Rd	South Hero		
Solar	Hot Water	Residential	83 Kibbe Farm Road	South Hero		
Solar	Roof-Mounted PV	Residential	88 Kibbe Point Road	South Hero	2722	6.4
Solar	Roof-Mounted PV	Business	328 U.S. Route 2	South Hero	1135	6.9
Solar	Roof-Mounted PV	Residential	64 Featherbed Lane	South Hero	5642	9

		All Generators in Municipality	Municipality			
Category	Sub - Category	Organization Type	Address	City	CPG Number	Capacity kW
Solar	Roof-Mounted PV	Residential	25 Haycorn Hollow	South Hero		5.3
Solar	Roof-Mounted PV	Residential	19 Ferry Rd	South Hero	3894	9
Solar	Roof-Mounted PV	Residential	30 Ferry Rd	South Hero	1716	7.9
Solar	Roof-Mounted PV	Residential	117 Lakeview Rd	South Hero	2692	6.4
Solar	Roof-Mounted PV	Residential	479 West Shore Rd	South Hero	1861	26.9
Solar	Roof-Mounted PV	Residential	29 Kibbe Farm Rd	South Hero	2796	8.6
Solar	Roof-Mounted PV	Residential	30 Whipple Rd	South Hero	3756	9.5
Solar	Roof-Mounted PV	Residential	320 South St	South Hero	2726	12.1
Solar	Roof-Mounted PV	Residential	321 Rt 2	South Hero	2877	5.2
Solar	Roof-Mounted PV	Residential	33 Crescent Bay Road	South Hero	3881	7.6
Solar	Roof-Mounted PV	Residential	47 Colodny Way	South Hero	3929	3.3
Solar	Roof-Mounted PV	Residential	58 West Shore Road	South Hero	2851	3.2
Solar	Roof-Mounted PV	Residential	30 Haycorn Hollow	South Hero	5263	5
Solar	Roof-Mounted PV	Residential	104 Kibbe Point Road	South Hero	2302	3.7
Solar	Roof-Mounted PV	Residential	380 South Street	South Hero	1026	3.2
Solar	Roof-Mounted PV	Residential	42 Sweeney Farm Rd	South Hero	5370	9
Solar	Roof-Mounted PV	Residential	45 Heron Ridge Road	South Hero	2732	5.9
Solar	Roof-Mounted PV	Residential	7 Hochelaga Road	South Hero	2639	8.1
Solar	Roof-Mounted PV	Residential	30 Wally's Point Rd	South Hero	3935	11
Solar	Roof-Mounted PV	Residential	21 Contentment Lane	South Hero	2875	5.6
Solar	Roof-Mounted PV	Residential	15 Fox Crossing Rd	South Hero	2652	5.9
Solar	Roof-Mounted PV	Residential	122 Station St	South Hero	4007	6.2
Solar	Roof-Mounted PV	Residential	25 Ministry Lane	South Hero	5530	6.7
Solar	Roof-Mounted PV	Farm	153 West Shore Road	South Hero	3801	18.4
Solar	Roof-Mounted PV	Institution	75 South Street	South Hero	1268	9.2
Solar	Roof-Mounted PV	Residential	77 Landon Rd	South Hero	5437	7
Solar	Roof-Mounted PV	Residential	50 Whipple Rd	South Hero	1838	3.2

	A	II Generators in Municipality	Municipality			
Category	Sub - Category	Organization Type	Address	City	CPG Number	Capacity kW
Solar	Roof-Mounted PV	Residential	86 Lombard Lane	South Hero	7222	3.8
Solar	Roof-Mounted PV	Residential	14 Melcher Place	South Hero	6932	10
Solar	Roof-Mounted PV	Residential	33 Colony Way	South Hero	7263	7.6
Solar	Roof-Mounted PV	Residential	69 Sunset Beach Road	South Hero	7277	2
Solar	Roof-Mounted PV	Residential	15 lodine Spring Street	South Hero	7221	2
Solar	Roof-Mounted PV	Residential	63 West Shore Road	South Hero	7245	15
Solar	Roof-Mounted PV	Business	330-334 U.S. 2	South Hero	7282	15
Solar	Roof-Mounted PV	Residential	113 East Shore Rd	South Hero	6673	10
Solar	Roof-Mounted PV	Residential	1 Town Line Road	South Hero	2715	5.6
Solar	Roof-Mounted PV	Residential	8 Whipple Rd	South Hero	3099	4.3
Wind	Small Wind	Residential	76 Lakeview Road	South Hero	414	2.5
Wind	Small Wind	Residential	134 East Shore Road	South Hero	398	2.5

Municipal Analysis & Targets - Swanton

The following is an explanation of the municipal energy data compiled by Northwest Regional Planning Commission (NRPC). The intent of the municipal energy data is to provide the municipalities with data required to ensure compliance with the requirements of Act 174 and "Enhanced Energy Planning" (24 V.S.A. 4352). The following tables contain data that estimates

current energy use and provides targets for future energy use across all sectors (transportation, heating, and electricity). It also sets targets for renewable energy generation within the municipality.

This data is meant to be a starting point for the municipality to begin planning its energy future and to talk about the changes that may need to occur within the municipality to ensure that local, regional and state energy goals are met. This includes the State of Vermont's goal to have 90% of all energy demand be met from renewable sources by 2050.

Figure 1 - Data Sources

ACS - American Community Survey
DOL -Vermont Department of Labor
DPS - Vermont Department of Public Service
EIA - Energy Information Administration
EVT - Efficiency Vermont
LEAP - Long-Range Energy Alternatives Planning
VEIC - Vermont Energy Investment Corporation
VTrans - Vermont Agency of Transportation

Data Sources

Estimates of current energy use consist primarily of data available from the American Community Survey (ACS), the Vermont Agency of Transportation (VTrans), the Vermont Department of Labor (DOL), and the Vermont Department of Public Service (DPS). Targets for future energy use are reliant upon the Long-range Energy Alternatives Planning (LEAP) analysis for the region completed the Vermont Energy Investment Corporation (VEIC). Targets for future energy generation have come from the regional planning commission and DPS. For more information on LEAP, see the Northwest Regional Energy Plan (www.nrpcvt.com). Targets for both future energy use and energy generation have been generally developed using a "top down" method of disaggregating regional data to the municipal level.

It is possible to develop "bottom up" data. For those municipalities interested in that approach, please see the Department of Public Service's Analysis and Targets Guidance (http://publicservice.vermont.gov/content/act-174-recommendations-and-determination-standards).

Please remember that the targets established by LEAP represent only one way to achieve energy goals. There may several other similar pathways that a municipality may choose to take in order to meet the 90x50 goal.

Below is a worksheet by worksheet explanation of the Municipal Template spreadsheet:

1. Municipal Data Summary

The following tables summarize all data that is required to be in a municipal plan if the plan is to meet the "determination" standards established by the Vermont Department of Public Service.

Table 1A: Current Municipal Transportation Energy Use			
Transportation Data	Municipal Data		
Total # of Passenger Vehicles (ACS 2011-2015)	4,916		
Average Miles per Vehicle (Vtrans)	11,356		
Total Miles Traveled	55,826,096		
Realized MPG (2013 - VTrans 2015 Energy Profile)	18.6		
Total Gallons Use per Year	3,001,403		
Transportation BTUs (Billion)	361		
Average Cost per Gallon of Gasoline (RPC)	2.31		
Gasoline Cost per Year	6,933,241		

This table uses data from the American Community Survey (ACS) and Vermont Agency of Transportation (VTrans) to calculate current transportation energy use and energy costs in the municipality.

Table 1B: Current Municipal Residential Heating Energy Use					
Fuel Source	Municipal Households (ACS 2011-2015)	% of Municipal Households	Municipal Square Footage Heated	Municipal BTU (in Billions)	
Natural Gas	937	35.7%	1,532,720	92	
Propane	333	12.7%	568,560	34	
Electricity	55	2.1%	70,224	4	
Fuel Oil	1003	38.2%	1,735,120	104	
Coal	0	0.0%	0	0	
Wood	245	9.3%	448,880	27	
Solar	0	0.0%	0	0	
Other	45	1.7%	77,936	5	
No Fuel	10	0.4%	19,040	1	

This table displays data from the ACS that estimates current municipal residential heating energy use.

100.0%

Total

2628

267

4,452,480

Table 1C: Current Municipal Commercial Energy Use					
	Commercial Establishments in Municipality (VT DOL)	Estimated Thermal Energy BTUs per Commercial Establishment (in Billions) (VDPS)	Estimated Thermal Energy BTUs by Commercial Establishments in Municipality (in Billions)		
Municipal Commercial Energy Use	175	0.725	127		

The table uses data available from the Vermont Department of Labor (VT DOL) and the Vermont Department of Public Service (DPS) to estimate current municipal commercial establishment energy use in the municipality.

Table 1D: Current Electricity Use				
Use Sector Current Electricity Use				
Residential (kWh)	23,623,991			
Commercial and Industrial (kWh)	44,900,317			
Total (kWh)	68,524,308			

This table displays current electricity use within the municipality. This data is available from Efficiency Vermont (EVT).

Table 1E: Residential Thermal Efficiency Targets			
	2025	2035	2050
"Residential - Increased Efficiency and Conservation (% of municipal households to be weatherized)"	5%	16%	78%

This table displays targets for thermal efficiency of residential structures. The data is based on a methodology developed by DPS using data available from the regional Long-range Energy Alternatives Planning (LEAP) analysis and ACS. The data in this table represents the percentage of municipal households that will need to be weatherized in the target years. The target is cumulative.

Table 1F: Commercial Thermal Efficiency Target			
	2025	2035	2050
"Commercial - Increased Efficiency and Conservation (% of commercial establishments to be weatherized)"	25%	25%	73%

This table shows the same information as Table 1E, but sets a target for commercial thermal efficiency and weatherization. Information from the VT DOL is required to complete this target. The target is cumulative.

Table 1G: Thermal Fuel Switching (Residential and Commercial) – Wood Systems

	2025	2035	2050
New Efficient Wood Heat Systems (in units)	14	34	128

This table provides a target for new wood heating systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 1H: Thermal Fuel Switching (Residential and Commercial) – Heat Pumps

	2025	2035	2050
New Heat Pumps (in units)	274	654	1293

This table provides a target for new heat pump systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS. The target is cumulative.

Table 11: Electricity Efficiency Targets

	2025	2035	2050
Increase Efficiency and Conservation (BTUs)	25.2%	48.3%	100.7%

Data in this table displays a target for increased electricity efficiency and conservation during the target years. This target will be met through conversions to high efficiency appliances, electric heat pumps, and electric light-duty vehicles. These targets were developed using regional LEAP analysis. The target is cumulative.

Table 1J: Use of Renewables - Transportation

	2025	2035	2050
Renewable Energy Use - Transportation (BTUs)	9.9%	31.8%	90.5%

This data displays targets for the percentage of transportation energy use coming from renewable sources during each target year. This target will be met through conversions to electric light-duty vehicles and biodiesel heavy-duty vehicles. This data was developed using the LEAP analysis. The target is cumulative.

Table 1K: Use of Renewables – Heating				
2025 2035 2050				
Renewable Energy Use - Heating (BTUs)	44.6%	57.7%	85.5%	

This data displays targets for the percentage of heating energy use coming from renewable sources during each target year. This target will be met through conversions to electric heat pumps and high efficiency wood heating systems. This data was developed using information from the LEAP analysis. The target is cumulative.

Table 1L: Use of Renewables – Electricity				
2025 2035 2050				
Renewable Energy Use - Electricity (MWh)	9,408.3	18,816.7	28,510.1	

This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1Q. The target is cumulative.

Table 1M: Transportation Fuel Switching	Targets - Electric Vehicles
---	-----------------------------

	2025	2035	2050
Electric Vehicles	430	3221	7663

This tables displays a target for switching from fossil fuel based vehicles (gasoline and diesel) to electric vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

	Transpartation	Fuel Cuitables	Targets - Biodiesel
TADIO INC	Hansoonallon	FIRE SWIICHING	HAMAIS - KIONIASAL
Table III.	Hansportation	I GOI SYVILOI III IG	raigets bloateser

	2025	2035	2050
Biodiesel Vehicles	793	1581	3048

This tables displays a target for switching from fossil fuel based vehicles to biodiesel-powered vehicles. This target is calculated using LEAP and ACS data. The target is cumulative.

Table 10: Existir	ng Renewable Generat	tion
Renewable Type	MW	MWh
Solar	0.79	968.86
Wind	0.00	0.00
Hydro	0.00	0.00
Biomass	0.00	0.00
Other	0.00	0.00
Total Existing Generation	0.79	968.86

Table 10 shows existing renewable generation in the municipality, in MW and MWh, based on information available from the Vermont Department of Public Service.

Table 1P: Renewable	Generation Potentia	ıl
Renewable Type	MW	MWh
Rooftop Solar	4	4,296
Ground-mounted Solar	1,180	1,447,523
Wind	2,131	6,534,213
Hydro	0.865	3,031
Biomass and Methane	0	0
Other	0	0
Total Renewable Generation Potential	3,316	7,989,064

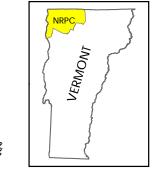
Renewable generation potential is based on mapping completed by the regional planning commission that is based on the Municipal Determination Standards and associated guidance documents developed by DPS. The renewable generation potential is expressed in MW and MWh by the type of renewable resource (solar, wind, hydro, etc.).

Table 1	Q: Renewa	able Gene	eration 7	Targets 1
	—		J. G	. a. 900

	2025	2035	2050
Total Renewable Generation Target (in MWh)	9,408.35	18,816.69	28,510.14

This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1L.

Table 1R: Sufficient Land?


	Y/N
Solar	Υ
Wind	Υ

This table shows whether or not there is sufficient land in the municipality to meet the renewable generation targets based on the renewable generation potential in the municipality.

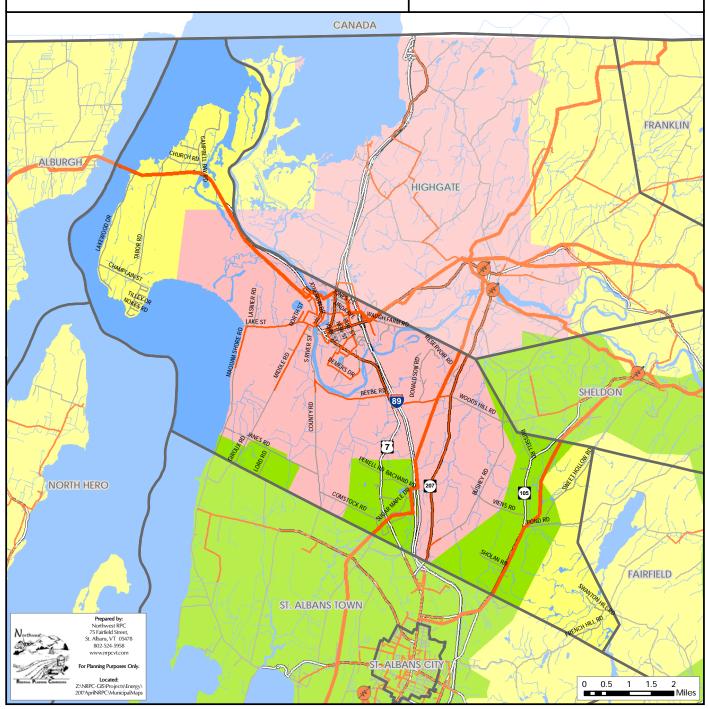
Utility Service Areas

Swanton, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend **Utility Service Area Features**

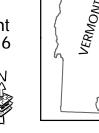
Green Mountain Power



Swanton Village Electric

Vermont Electric Co-op

3 Phase Power Line Transmission Line


Enosburg Falls Electric

Transmission & 3 Phase **Power Infrastructure**

Swanton, Vermont Act 174 The Energy Development Improvement Act of 2016

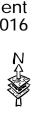
This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "sitting maps."

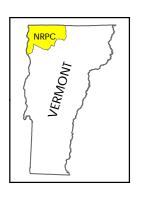
Legend

Substation

3 Phase Power Line

Transmission Line


1/2 Mile Buffer (3 Phase Power Line & Transmission Line)

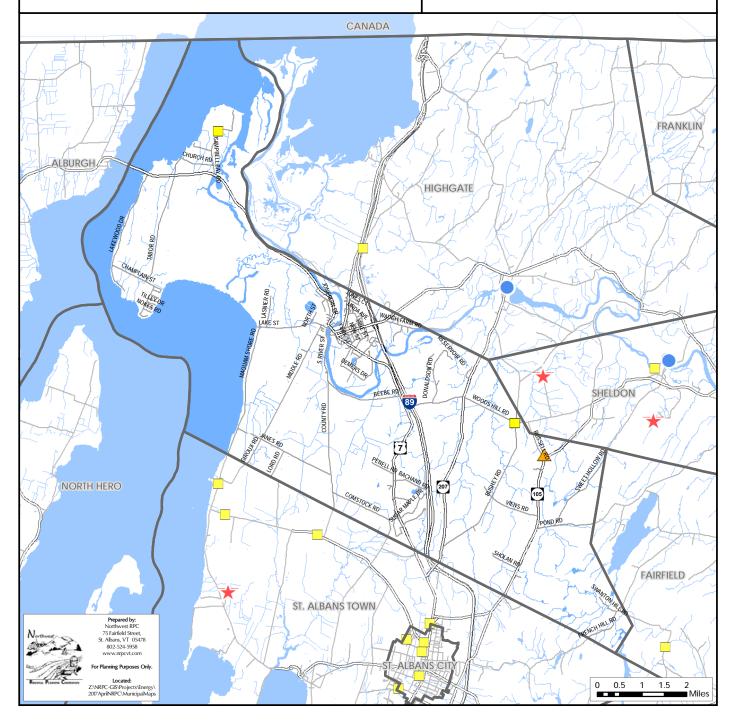


Existing Generation Facilities

Swanton, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

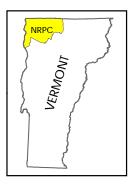

Biomass Facility

Hydro Facility

Solar Facility

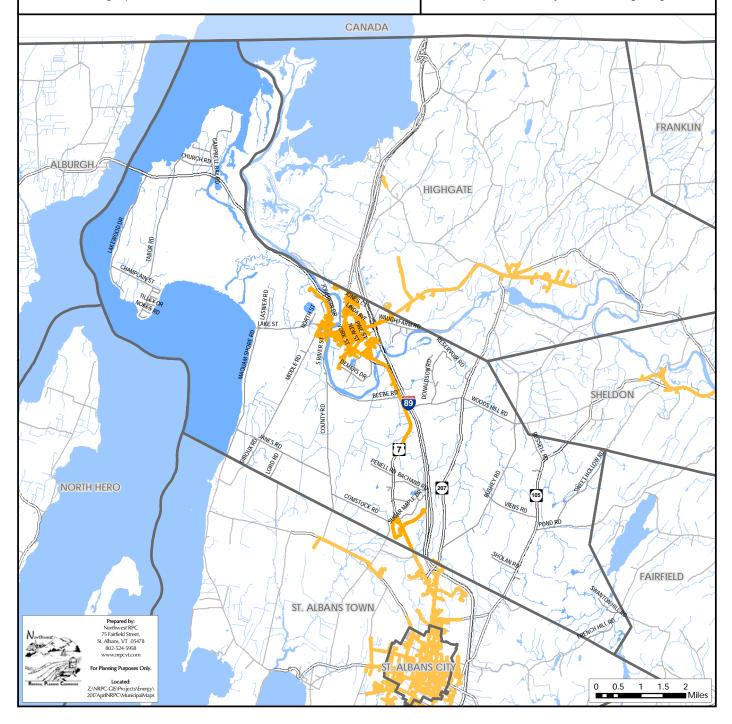
Note: Only generators 15kW are shown on the map. A full list of all generators is available.

Wind Facility



Natural Gas Lines

Swanton, Vermont Act 174 The Energy Development Improvement Act of 2016


This map and the corresponding data is intended to be used to inform energy planning efforts by municipallities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Natural Gas Line

Hydro

Swanton, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Substation

3 Phase Power Line Transmission Line

Designated Outstanding Resource Water

Known Constraint - Designated National Wild & Scenic River

Possible Constraint -Stressed or Impaired Water

Possible Constraint - RINAs

Potential Hydroelectric Facility

< 50 kW Capacity

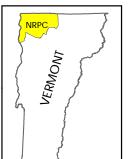
> 50 kW Capacity

High Hazard with < 50 kW Capacity

High Hazard with > 50 kW Capacity Operating Hydroelectric Facility

Dam not on National Wild and Scenic River

Dam on National Wild



Solar

Swanton, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "stifing maps." be used of as "siting maps."

Legend

💉 Substation

3 Phase Power Line

Transmission Line

1/2 Mile Buffer (3 Phase Power Line & Transmission Line)

Prime Solar/No Known Constraints

Base Solar/Possible Constraints



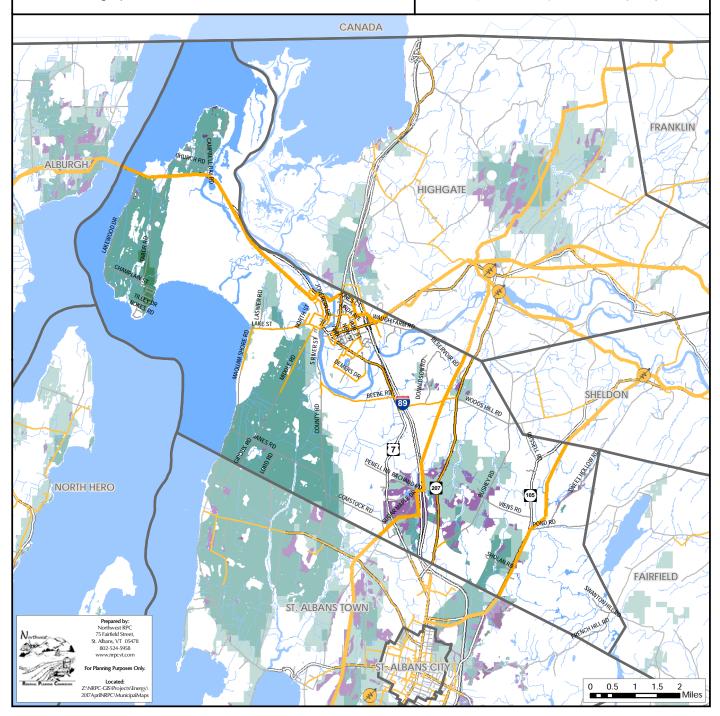
Wind

Swanton, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipallities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend

Substation


3 Phase Power Line Transmission Line

Prime Wind Areas of high wind potential and no known constraints.

Darker areas have higher wind speeds.

Base Wind Areas of high wind potential and a presence of possible constraints.

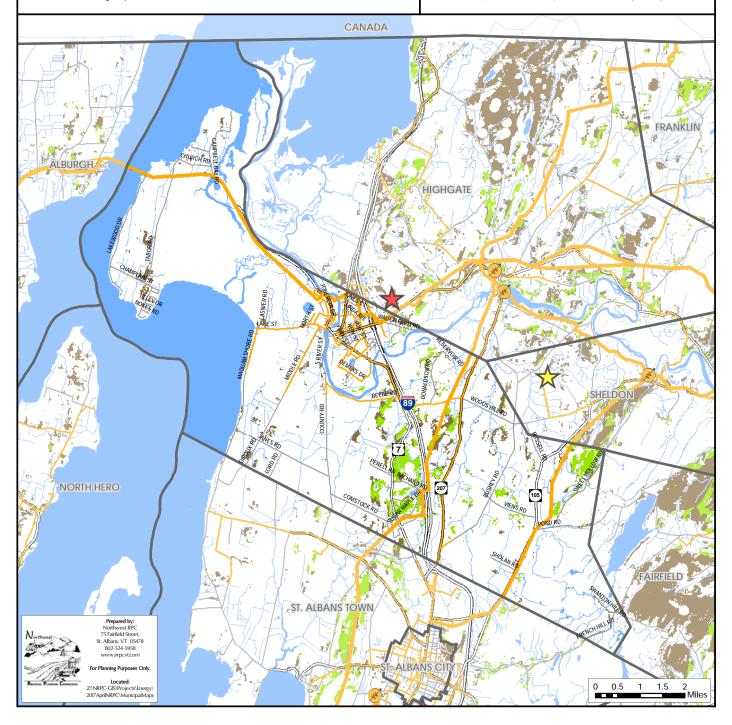
Darker areas have higher wind speeds.

Woody Biomass

Swanton, Vermont Act 174 The Energy Development Improvement Act of 2016

This map and the corresponding data is intended to be used to inform energy planning efforts by municipalities and regions. This may also be used for conceptual planning or initial site identification by those interested in developing renewable energy infrastructure. The maps do NOT take the place of site-specific investigation for a proposed facility and cannot be used of as "siting maps."

Legend


Biomass System

Cow Power Substation

3 Phase Power Line

Transmission Line

Prime Woody Biomass/No Known Constraints Base Woody Biomass/Possible Constraints

	IIA	All Generators in Municipality	ı Municipality			
Category	Sub - Category	Organization Type	Address	City	CPG Number	Capacity kW
Solar	Ground-mounted PV: Fixed Rack	Farm	101 Campbell Bay Rd	Swanton	6221	36
Solar	Ground-mounted PV: Fixed Rack	Residential	264 Woods Hill Road	Swanton	16-0234	15
Solar	Ground-mounted PV: Fixed Rack	Residential	4 Cedar Ledges Estate	Swanton	16-0886	12.5
Solar	Ground-mounted PV: Pole	Residential	2502 Highgate Road	Swatnon	212	3.3
Solar	Ground-mounted PV: Tracker	Residential	8 Andersen Ln	Swanton	5072	7
Solar	Ground-mounted PV: Tracker	Business	580 St. Albans Rd	Swanton	3113	9
Solar	Ground-mounted PV: Tracker	Residential	3 Anderson Ln	Swanton	5125	7
Solar	Hot Water	Residential	20 Blake Street	Swanton		
Solar	Hot Water	Residential	1 Abenaki Acres Drive	Swanton		
Solar	Roof-Mounted PV	Residential	220 Mountain View Drive	Swanton		7.5
Solar	Roof-Mounted PV	Residential	2190 Highgate Rd	Swanton	5040	10
Solar	Roof-Mounted PV	Residential	109 Gauthier Dr	Swanton	3895	3
Solar	Roof-Mounted PV	Residential	239 North River St	Swanton	6027	2
Solar	Roof-Mounted PV	Residential	301 Lakewood Dr	Swanton	4110	9
Solar	Roof-Mounted PV	Residential	38 Campbell Bay Road	Swanton		10
Solar	Roof-Mounted PV	Residential	55 Lord Rd	Swanton	2440	1.6
Solar	Roof-Mounted PV	Residential	181 Champlain St	Swanton	2972	6.2
Solar	Roof-Mounted PV	Residential	59 Lasnier Rd	Swanton	3450	8.9
Solar	Roof-Mounted PV	Residential	13 Leduc Dr	Swanton	2849	4
Solar	Roof-Mounted PV	Residential	1910 Sheldon Rd	Swanton	3119	8.9
Solar	Roof-Mounted PV	Residential	79 Comstock Road	Swanton	6276	7
Solar	Roof-Mounted PV	Residential	2180 Highgate Rd	Swanton	3058	6.2
Solar	Roof-Mounted PV	Residential	239 Woods Hill Rd	Swanton	5626	8
Solar	Roof-Mounted PV	Residential	61 Viens Rd	Swanton	3821	10
Solar	Roof-Mounted PV	Residential	319 Lakewood Drive	Swanton	2625	5.6
Solar	Roof-Mounted PV	Residential	227 Maquam Shore Rd	Swanton	2911	4
Solar	Roof-Mounted PV	Residential	103 Dorian Drive	Swanton	3741	6

Organization Type Residential	lity	dress City CPG Capacity Number kW	snier Rd Swanton 5985 9	uam Shore Swanton 9.1	wood Drive Swanton 2982 7.5	or Road Swanton 179 7	on Hill Road Swanton 455 3.7	ic Walk Swanton 16-0399 12	wood Drive Swanton 6518 6	rs Way Swanton 7200 4	Maple Drive Swanton 16-0406 5	eldon Rd Swanton 3.6	es Circle Swanton 7218 5	gate Road Swanton 16-0403 5	n's Way Swanton 16-0829 3.6	am Shore Rd Swanton 16-0146 7.6	wn Ave Swanton 16-0290 3.8	nell Rd Swanton 7330 6.6	eldon Rd Swanton 16-0364 3.8	ewood Dr Swanton 6851 4	ds Hill Road Swanton 16-0234 15	in View Drive Swanton 7.6	am Shore Rd Swanton 16-0599 14	r Newton Rd Swanton 16-1693 6	r Newton Rd Swanton 16-1482 15	rns Way Swanton 3	in View Drive Swanton 7.5	am Shore Rd Swanton 16-1546 7.5	
	erators in Municipality	anization Type	idential 149 Lasnier Rd	idential 482 Maquam Shore	idential 316 Lakewood Drive	titution 29 Tabor Road	idential 28 Swanton Hill Road	idential 5 Rustic Walk	idential 124 Lakewood Drive	idential 4 Tylers Way	idential 25 Sugar Maple Drive	idential 1966 Sheldon Rd	idential 4 Ceres Circle	idential 2029 Highgate Road	idential 5 Dawn's Way	idential 210 Maquam Shore Rd	idential 62 Brown Ave	idential 10 Penell Rd	idential 2101 Sheldon Rd	idential 323 Lakewood Dr	idential 264 Woods Hill Road	idential 262 Mountain View Drive	idential 580 Maquam Shore Rd	idential 4847 Lower Newton Rd	usiness 5700 Lower Newton Rd	idential 2 Dawns Way	idential 220 Mountain View Drive	idential 1063 Maquam Shore Rd	Docidontial 14 Chaploy Contor
	All Gene																												

	AI	II Generators in Municipality	Municipality			
Category	Sub - Category	Organization Type	Address	City	CPG Number	Capacity kW
Solar	Roof-Mounted PV	Residential	39 Mountain View Dr	Swanton		9
Wind	Small Wind	Residential	31 Russell Road	Swanton	258	19
Wind	Small Wind	Institution	29 Tabor Road	Swanton	179	9.5

Appendix G - Municipal Energy Data | Page 402

APPENDIX H - REGIONAL TARGET SUMMARY

1A. Current Municipal Transportation Energy Use			
Transportation Data	Municipal Data		
Total # of Vehicles (ACS 2011-2015)	42,471		
Average Miles per Vehicle (Vtrans)	11,356		
Total Miles Traveled	482,300,676		
Average Gallons Use per Vehicle per Year (VTrans)	19		
Total Gallons Use per Year	25,930,144		
Transportation BTUs (Billion)	3,122		
Average Cost per Gallon of Gasoline (RPC)	2		
Gasoline Cost per Year	59,898,632		

This table uses data from the American Community Survey (ACS) and Vermont Agency of Transportation (VTrans) to calculate current transportation energy use and energy costs.

1B. Current Municipal Residential Heating Energy Use					
Fuel Source	Municipal Households (ACS 2011-2015)	% of Municipal Households	Municipal Square Footage Heated	Municipal BTU (in Billions)	
Natural Gas	4,414	20.4%	7,181,408	430,884,480,000	
Propane	3,051	14.1%	5,347,984	320,879,040,000	
Electricity	470	2.2%	678,048	40,682,880,000	
Fuel Oil	9,328	43.1%	16,170,176	970,210,560,000	
Coal	17	0.1%	27,440	1,646,400,000	
Wood	4,008	18.5%	7,353,856	441,231,360,000	
Solar	0	0.0%	0	0	
Other	341	1.6%	599,984	35,999,040,000	
No Fuel	21	0.1%	33,648	2,018,880,000	
Total	21,650	100.0%	37,392,544	2,243,552,640,000	

This table displays data from the ACS that estimates current municipal residential heating energy use.

1C. Current Municipal Commercial Energy Use					
	Commercial Establishments in Municipality (VT DOL)	Estimated Thermal Energy BTUs per Commercial Establishment (in Billions) (VDPS)	Estimated Thermal Energy BTUs by Commercial Establishments in Municipality (in Billions)		
Municipal Commercial Energy Use	1,123	0.725	28		

The table uses data available from the Vermont Department of Labor (VT DOL) and the Vermont Department of Public Service (DPS) to estimate current municipal commercial establishment energy use in the municipality.

1D. Current Electricity Use				
Use Sector	Current Electricity Use			
Residential (MWh)	194,619			
Commercial and Industrial (MWh)	288,132			
Total (MWh)	482,751			

This table displays current electricity use within the municipality. This data is available from Efficiency Vermont (EVT).

1E. Residential Thermal Efficiency Targets				
	2025	2035	2050	
"Residential - Increased Efficiency and Conservation (% of municipal households to be weatherized)"	4%	14%	57%	

This table displays targets for thermal efficiency for residential structures based on a methodology developed by DPS using data available from the regional Long-range Energy Alternatives Planning (LEAP) analysis and ACS. The data in this table represents the percentage of municipal households that will need to be weatherized in the target years.

1F. Commercial Thermal Efficiency Targets				
	2025	2035	2050	
"Commercial - Increased Efficiency and Conservation (% of commercial establishments to be weatherized)"	24%	32%	64%	

This table shows the same information as Table 1E, but sets a target for commercial thermal efficiency. Information from the VT DOL is required to complete this target.

1G. Thermal Fuel Switching Targets (Residential and Commercial) - Wood Systems

	2025	2035	2050
New Efficient Wood Heat Systems (in units)	46	89	720

This table provides a target for new wood heating systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS.

1H. Thermal Fuel Switching Targets (Residential and Commercial) - Heat Pumps

	2025	2035	2050
New Heat Pumps (in units)	3,203	6,407	11,603

This table provides a target for new heat pump systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS.

11. Electricity Efficiency Targets			
	2025	2035	2050
Increase Efficiency and Conservation (% of BTUs)	25.2%	48.3%	100.7%

Data in this table displays a target for increased electricity efficiency and conservation during the target years. These targets were developed using regional LEAP analysis.

1J. Use of Renewables - Transportation				
	2025	2035	2050	
Renewable Energy Use - Transportation (% of BTUs)	9.6%	31.3%	90.3%	

This data displays targets for the percentage of transportation energy use coming from renewable sources during each target year. This data was developed using the LEAP analysis.

1K. Use of Renewables - Heating				
	2025	2035	2050	
Renewable Energy Use - Heating (% of BTUs)	48.3%	61.6%	87.7%	

This data displays targets for the percentage of heating energy use coming from renewable sources during each target year. This data was developed using information from the LEAP analysis.

1L. Use of Renewables - Electricity				
	2025	2035	2050	
Renewable Energy Use - Electricity (MWh)	115,169.5	230,338.9	348,998.4	

This data displays targets for MWh of electricity generation coming from renewable sources within the municipality during each target year. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1Q.

1M. Transportation Fuel Switching Target - Electric Vehicles			
	2025	2035	2050
Electric Vehicles	3,716	27,828	62,889

This tables displays a target for switching from fossil fuel based vehicles (gasoline and diesel) to electric vehicles. This target is calculated on Worksheet 2. by using LEAP and ACS data.

1N. Transportation Fuel Switching Target - Biodiesel Vehicles			
	2025	2035	2050
Biodiesel Vehicles	6,546	13,034	24,989

This tables displays a target for switching from fossil fuel based vehicles to biodiesel-powered vehicles. This target is calculated on Worksheet 2. by using LEAP and ACS data.

10. Existing Renewable Generation			
Renewable Type	MW	MWh	
Solar	9.49	11,638.54	
Wind	5.26	16,127.16	
Hydro	41.38	144,995.52	
Biomass	2.31	9,429.57	
Other	0	0	
Total Existing Renewable Generation	58.44	182,190.79	

Table 10 shows existing renewable generation in the municipality, in MW and MWh, based on information available from the Vermont Department of Public Service.

1P. Renewable Generation Potential			
Renewable Type	MW	MWh	
Rooftop Solar	29	35,351	
Ground-mounted Solar	3,455	4,237,037	
Wind	3,111	9,536,793	
Hydro	1	3,574	
Biomass and Methane	0	0	
Other	0	0	
Total Renewable Generation Potential	6,595	13,812,755	

Renewable generation potential is based on mapping completed by the Regional Planning Commission that is based on the Municipal Determination Standards and associated guidance documents developed by DPS. The renewable generation potential is expressed in MW and MWh by the type of renewable resource (solar, wind, hydro, etc.).

	2025	2035	2050
tal			

1Q. Renewable Generation Targets

	2023	2000	2030
Total Renewable Generation Target (in MWh)	115,169.47	230,338.94	348,998.40

Renewable generation targets for municipalities were developed by the regional planning commission.

1R. Sufficient Land		
	Y/N	
Solar	Υ	
Wind	Υ	

This table shows whether or not there is sufficient land in the municipality to meet the renewable generation targets based on the renewable generation potential in the municipality.